We use the quantum version of Chebyshev polynomials to explicitly construct the recursive formulas for the Kronecker quantum cluster algebra with principal coefficients.As a byproduct,we obtain two barinvariant positi...We use the quantum version of Chebyshev polynomials to explicitly construct the recursive formulas for the Kronecker quantum cluster algebra with principal coefficients.As a byproduct,we obtain two barinvariant positive ZP-bases with one being the atomic basis.展开更多
We construct bar-invariant Z[q ±1/2]-bases of the quantum cluster algebra of Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the correspond...We construct bar-invariant Z[q ±1/2]-bases of the quantum cluster algebra of Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the corresponding cluster algebra. As a byproduct, we prove positivity of the elements in these bases.展开更多
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit stat...Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.展开更多
In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine qua...In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.展开更多
The cluster property is one of fundamental properties in physics. This property means that there are no relations between two events that are sufficiently separated. Because the cluster property is directly connected ...The cluster property is one of fundamental properties in physics. This property means that there are no relations between two events that are sufficiently separated. Because the cluster property is directly connected with entanglement in quantum field theory and in many-body systems, theoretical and experimental progress on entanglement stimulates us to study this property deeply. In this paper we investigate the cluster property in the spin 1/2 XXZ antiferromagnet on the square lattice with an explicitly symmetry breaking interaction of strength g. In this model spontaneous symmetry breaking occurs when the lattice size N is infinitely large. On the other hand, we have to make g zero in order to obtain quantities in the XXZ model with no symmetry breaking interaction. Since some results depend on the sequence of limit operations — ?and , it is difficult to draw a clear conclusion in these limits. Therefore we study the model with finite g on the finite lattice, whose size N is supposed to be 1020, for our quantitative calculations. Then we can obtain the concrete ground state. In order to study the cluster property we calculate the spin correlation function. It is known that the function due to Nambu-Goldstone mode (gapless mode), which is calculated using linear spin wave theory, satisfies this property. In this paper we show that almost degenerate states also induce the spin correlation. We assume that the spin correlation function in measurements is a sum of the function due to Nambu-Goldstone mode and one due to these degenerate states. Then we examine whether the additional correlation function violates the cluster property or not. Our conclusion is that this function is finite at any distance, which means the violation of the cluster property, and it is of order of . Except for the case of extremely small g, this violation is the fine effect. Therefore the correlation function due to the degenerate states can be observed only when it is larger than the spin correlation function due to Nambu-Goldstone mode. We show that g required for this condition depends on the distance between positions of two spin operators.展开更多
There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. ...There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. In the works recently published by the author, the extensive and quantitative examination has been made about the violation of cluster property in the correlation function of the spin operator for the quantum spin system. These works have shown that, when we include the symmetry breaking interaction, the effect by the violation is proportional to the inverse of the system size. Therefore this effect is tinny since the system size is quite large. In order to find the effect due to the violation even when the size is large, we propose a new system where additional spins couple with the spin system on the square lattice, where the coupling constant between these systems being assumed to be small. Applying the perturbation theory, we obtain the effective Hamiltonian for the additional system. This Hamiltonian includes Curie-Weiss model that is induced by the violation of the cluster property. Then we find that this effective Hamiltonian has the factor which is the inverse of the system size. Since Curie-Weiss model, which is known to be exactly soluble, has to contain this factor so that the thermodynamical properties are well-defined, the essential factor for the Hamiltonian is determined by the coupling and the strength of the symmetry breaking interaction. Our conclusion is, therefore, that it is possible to observe the effect by the violation of the cluster property at the inverse temperature whose order is given by these parameters.展开更多
The electronic structures of rare earth cluster halides R(R_6X_(12)) and their interstitial compounds R_7X_(12)Z were studied by the DV-X_(?) method (R=Sc,Y,Pr,Gd or Er;X=Cl,Br or I;Z=B,C,N,Fe,Co or Ru).The results sh...The electronic structures of rare earth cluster halides R(R_6X_(12)) and their interstitial compounds R_7X_(12)Z were studied by the DV-X_(?) method (R=Sc,Y,Pr,Gd or Er;X=Cl,Br or I;Z=B,C,N,Fe,Co or Ru).The results show that because f electrons in empty rare earth cluster are screened,their orbitals are more difficult to overlap each other,a deficiency of skeleton orbitals in cluster causing the system to be unstable.They are easily condensed into chain compound R_2X_3 or R_5X_8.If a light atom of main group is embedded into octahedral cluster,bonding orbitals formed from interstitial atom and rare earth cluster strengthen cluster skeleton bond in the system to reach structural stability.If embedded atom belongs to transition metal,bonding orbitals composed of that of interstitial atom and rare earth cluster take the place of original cluster skeleton orbitals to form heteronuclear metal cluster (or double-coordination compound).展开更多
In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state i...In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state is shared by a sender (Alice), a controller (Charlie), and a receiver (Bob), and the sender only needs to perform the Bell-state measurements on her particles during the quantum state sharing process, the controller performs a single-qubit projective measurement on his particles, then the receiver can reconstruct the arbitrary two-qubit state by performing some appropriate unitary transformations on his particles after he has known the measured results of the sender and the controller.展开更多
To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive l...To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive layer are mapped to the qubits on the Bloch sphere, and then, the winning node is obtained by computing the spherical distance between sample and weight value. Finally, the weight values of the winning nodes and its neighborhood are updated by rotating them to the sample on the Bloch sphere until the convergence. The clustering results of IRIS sample show that the proposed approach is obviously superior to the classical self-organization network and the K-mean clustering algorithm.展开更多
Multiconfiguration quantum chemical calculation of geometry and electron properties of Fe2Si18 cluster indicates on the predictable change of spin states as a function of the excitation energy beginning from ground st...Multiconfiguration quantum chemical calculation of geometry and electron properties of Fe2Si18 cluster indicates on the predictable change of spin states as a function of the excitation energy beginning from ground state with the total spin S = 4. The charges on the two Fe atoms are quite different as well as the charge distribution on the surrounding Si atoms. Nevertheless the total dipole moment of the cluster is a monotonically decreasing function of the excitation energy and it reaches practically zero value in the first singlet state in which the cluster represents a new version of a quibit system.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11771217)supported by National Natural Science Foundation of China(Grant No.12031007)。
文摘We use the quantum version of Chebyshev polynomials to explicitly construct the recursive formulas for the Kronecker quantum cluster algebra with principal coefficients.As a byproduct,we obtain two barinvariant positive ZP-bases with one being the atomic basis.
基金supported by the Fundamental Research Funds for the Central Universitiespartially supported by the Ph.D. Programs Foundation of Ministry of Education of China (Grant No.200800030058)
文摘We construct bar-invariant Z[q ±1/2]-bases of the quantum cluster algebra of Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the corresponding cluster algebra. As a byproduct, we prove positivity of the elements in these bases.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671087)
文摘Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.
基金Project supported by the National Natural Science Foundation of China(Grant No.11475178)
文摘In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.
文摘The cluster property is one of fundamental properties in physics. This property means that there are no relations between two events that are sufficiently separated. Because the cluster property is directly connected with entanglement in quantum field theory and in many-body systems, theoretical and experimental progress on entanglement stimulates us to study this property deeply. In this paper we investigate the cluster property in the spin 1/2 XXZ antiferromagnet on the square lattice with an explicitly symmetry breaking interaction of strength g. In this model spontaneous symmetry breaking occurs when the lattice size N is infinitely large. On the other hand, we have to make g zero in order to obtain quantities in the XXZ model with no symmetry breaking interaction. Since some results depend on the sequence of limit operations — ?and , it is difficult to draw a clear conclusion in these limits. Therefore we study the model with finite g on the finite lattice, whose size N is supposed to be 1020, for our quantitative calculations. Then we can obtain the concrete ground state. In order to study the cluster property we calculate the spin correlation function. It is known that the function due to Nambu-Goldstone mode (gapless mode), which is calculated using linear spin wave theory, satisfies this property. In this paper we show that almost degenerate states also induce the spin correlation. We assume that the spin correlation function in measurements is a sum of the function due to Nambu-Goldstone mode and one due to these degenerate states. Then we examine whether the additional correlation function violates the cluster property or not. Our conclusion is that this function is finite at any distance, which means the violation of the cluster property, and it is of order of . Except for the case of extremely small g, this violation is the fine effect. Therefore the correlation function due to the degenerate states can be observed only when it is larger than the spin correlation function due to Nambu-Goldstone mode. We show that g required for this condition depends on the distance between positions of two spin operators.
文摘There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. In the works recently published by the author, the extensive and quantitative examination has been made about the violation of cluster property in the correlation function of the spin operator for the quantum spin system. These works have shown that, when we include the symmetry breaking interaction, the effect by the violation is proportional to the inverse of the system size. Therefore this effect is tinny since the system size is quite large. In order to find the effect due to the violation even when the size is large, we propose a new system where additional spins couple with the spin system on the square lattice, where the coupling constant between these systems being assumed to be small. Applying the perturbation theory, we obtain the effective Hamiltonian for the additional system. This Hamiltonian includes Curie-Weiss model that is induced by the violation of the cluster property. Then we find that this effective Hamiltonian has the factor which is the inverse of the system size. Since Curie-Weiss model, which is known to be exactly soluble, has to contain this factor so that the thermodynamical properties are well-defined, the essential factor for the Hamiltonian is determined by the coupling and the strength of the symmetry breaking interaction. Our conclusion is, therefore, that it is possible to observe the effect by the violation of the cluster property at the inverse temperature whose order is given by these parameters.
基金The project supported by the National Natural Science Foundation of China
文摘The electronic structures of rare earth cluster halides R(R_6X_(12)) and their interstitial compounds R_7X_(12)Z were studied by the DV-X_(?) method (R=Sc,Y,Pr,Gd or Er;X=Cl,Br or I;Z=B,C,N,Fe,Co or Ru).The results show that because f electrons in empty rare earth cluster are screened,their orbitals are more difficult to overlap each other,a deficiency of skeleton orbitals in cluster causing the system to be unstable.They are easily condensed into chain compound R_2X_3 or R_5X_8.If a light atom of main group is embedded into octahedral cluster,bonding orbitals formed from interstitial atom and rare earth cluster strengthen cluster skeleton bond in the system to reach structural stability.If embedded atom belongs to transition metal,bonding orbitals composed of that of interstitial atom and rare earth cluster take the place of original cluster skeleton orbitals to form heteronuclear metal cluster (or double-coordination compound).
基金Project supported by the National Natural Science Foundation of China (Grant No.10902083)the Natural Science Foundation of Shannxi Province,China (Grant No.2009JM1007)
文摘In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state is shared by a sender (Alice), a controller (Charlie), and a receiver (Bob), and the sender only needs to perform the Bell-state measurements on her particles during the quantum state sharing process, the controller performs a single-qubit projective measurement on his particles, then the receiver can reconstruct the arbitrary two-qubit state by performing some appropriate unitary transformations on his particles after he has known the measured results of the sender and the controller.
文摘To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive layer are mapped to the qubits on the Bloch sphere, and then, the winning node is obtained by computing the spherical distance between sample and weight value. Finally, the weight values of the winning nodes and its neighborhood are updated by rotating them to the sample on the Bloch sphere until the convergence. The clustering results of IRIS sample show that the proposed approach is obviously superior to the classical self-organization network and the K-mean clustering algorithm.
文摘Multiconfiguration quantum chemical calculation of geometry and electron properties of Fe2Si18 cluster indicates on the predictable change of spin states as a function of the excitation energy beginning from ground state with the total spin S = 4. The charges on the two Fe atoms are quite different as well as the charge distribution on the surrounding Si atoms. Nevertheless the total dipole moment of the cluster is a monotonically decreasing function of the excitation energy and it reaches practically zero value in the first singlet state in which the cluster represents a new version of a quibit system.
基金supported by Natural Science Research Project of High Education of Anhui Province (KJ2012Z080)Young Teachers Fund of Anhui University of Science and Technology(2012QNZ13)the Talent Foundation of High Education of Anhui Province for Outstanding Youth(2009QRZ056)
基金supported by the Program of the Young Teachers of College in Anhui Province(2008jq1118)The Youth Pro-gram of Fuyang Teachers College(2008LQ05,2008LQ04)~~