Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum chan...Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.展开更多
In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved i...In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved in the computation, and we study the evolution of n-qubit fidelity from the end of one application of the correcting circuit to the end of the next application. We assume that the correcting circuit does not introduce new errors, that it does not increase the execution time (i.e. its application takes zero seconds) and that quantum errors are isotropic. We show that the quantum code increases the fidelity of the states perturbed by quantum errors but that this improvement is not enough to justify the use of quantum codes. Namely, we prove that, taking into account that the time interval between the application of the two corrections is multiplied (at least) by the number of qubits n (due to the coding), the best option is not to use quantum codes, since the fidelity of the uncoded state over a time interval n times smaller is greater than that of the state resulting from the quantum code correction.展开更多
The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes ...The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.展开更多
We study the performances of quantum channel adaptive [4,1] code transmitting in a joint amplitude damping and dephasing channel, the [6,2] code transmitting in an amplitude damping channel by combining the encoding, ...We study the performances of quantum channel adaptive [4,1] code transmitting in a joint amplitude damping and dephasing channel, the [6,2] code transmitting in an amplitude damping channel by combining the encoding, noise process, and decoding as one effective channel. We explicitly obtain the entanglement fidelities. The recovery operators of the [6,2] code are given. The performance is nearly optimal compared with that of the optimal method of semidefinite programming.展开更多
A new description of the additive quantum codes is presented and a new way to construct good quantum codes [[n, k, d]] is given by using classical binary codes with specific properties in F2^3n. We show several conseq...A new description of the additive quantum codes is presented and a new way to construct good quantum codes [[n, k, d]] is given by using classical binary codes with specific properties in F2^3n. We show several consequences and examples of good quantum codes by using our new description of the additive quantum codes.展开更多
In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric ...In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes,and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields.Moreover,these optimal asymmetric quantum errorcorrecting codes constructed in this paper are different from the ones in the literature.展开更多
In a recent paper, Hu et al. defined the complete weight distributions of quantum codes and proved the Mac Williams identities, and as applications they showed how such weight distributions may be used to obtain the s...In a recent paper, Hu et al. defined the complete weight distributions of quantum codes and proved the Mac Williams identities, and as applications they showed how such weight distributions may be used to obtain the singleton-type and hamming-type bounds for asymmetric quantum codes. In this paper we extend their study much further and obtain several new results concerning the complete weight distributions of quantum codes and applications. In particular, we provide a new proof of the Mac Williams identities of the complete weight distributions of quantum codes. We obtain new information about the weight distributions of quantum MDS codes and the double weight distribution of asymmetric quantum MDS codes. We get new identities involving the complete weight distributions of two different quantum codes. We estimate the complete weight distributions of quantum codes under special conditions and show that quantum BCH codes by the Hermitian construction from primitive, narrow-sense BCH codes satisfy these conditions and hence these estimate applies.展开更多
Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum co...Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.展开更多
The stabilizer(additive)method and non-additive method for constructing asymmetric quantum codes have been established.In this paper,these methods are generalized to inhomogeneous quantum codes.
In most practical quantum mechanical systems,quantum noise due to decoherence is highly biased towards dephasing.The quantum state suffers from phase flip noise much more seriously than from the bit flip noise.In this...In most practical quantum mechanical systems,quantum noise due to decoherence is highly biased towards dephasing.The quantum state suffers from phase flip noise much more seriously than from the bit flip noise.In this work,we construct new families of asymmetric quantum concatenated codes(AQCCs)to deal with such biased quantum noise.Our construction is based on a novel concatenation scheme for constructing AQCCs with large asymmetries,in which classical tensor product codes and concatenated codes are utilized to correct phase flip noise and bit flip noise,respectively.We generalize the original concatenation scheme to a more general case for better correcting degenerate errors.Moreover,we focus on constructing nonbinary AQCCs that are highly degenerate.Compared to previous literatures,AQCCs constructed in this paper show much better parameter performance than existed ones.Furthermore,we design the specific encoding circuit of the AQCCs.It is shown that our codes can be encoded more efficiently than standard quantum codes.展开更多
The self-orthogonal condition is analyzed with respect to symplectic inner product for the binary code that generated by [B1 I B2 B3],where Bi are the binary n ×n matrices,I is an identity matrix.By the use of th...The self-orthogonal condition is analyzed with respect to symplectic inner product for the binary code that generated by [B1 I B2 B3],where Bi are the binary n ×n matrices,I is an identity matrix.By the use of the binary codes that generated by [B1 I B2 B2B1^T],asymptotic good[[2n ,n ]]additive quantum codes are obtained.展开更多
It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its des...It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.展开更多
In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some ne...In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated.展开更多
This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary qua...This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary quasi-cyclic codes are built. Second, three classical construction methods are generalized for new codes from old such that they are suitable for constructing binary self-orthogonal codes, and 62 binary codes and six subcode chains of obtained self-orthogonal codes are designed. Third, six pure binary quantum codes are constructed from the code pairs obtained through Steane construction. There are 66 good binary codes that include 12 optimal linear codes, 45 known optimal linear codes, and nine known optimal self-orthogonal codes. The six pure binary quantum codes all achieve the performance of their additive counterparts constructed by quaternary construction and thus are known optimal codes.展开更多
The quantum codes have been generalized to inhomogeneous case and the stabilizer construction has been established to get additive inhomogeneous quantum codes in [Sei. China Math., 2010, 53: 2501-2510]. In this paper...The quantum codes have been generalized to inhomogeneous case and the stabilizer construction has been established to get additive inhomogeneous quantum codes in [Sei. China Math., 2010, 53: 2501-2510]. In this paper, we generalize the known constructions to construct non-additive inhomogeneous quantum codes and get examples of good d-ary quantum codes.展开更多
In this paper,we develop a novel hybrid automatic-repeat-request(ARQ)protocol for the quantum communication system using quantum stabilizer codes.The quantum information is encoded by stabilizer codes to against the c...In this paper,we develop a novel hybrid automatic-repeat-request(ARQ)protocol for the quantum communication system using quantum stabilizer codes.The quantum information is encoded by stabilizer codes to against the channel noise.The twophoton entangled state is prepared for codeword secure transmission.Hybrid ARQ protocol rules the recognition and retransmission of error codewords.In this protocol,the property of quantum entangled state ensures the security of information,the theory of hybrid ARQ system improves the reliability of transmission,the theory of quantum stabilizer codes corrects the flipping errors of codewords.Finally,we verify the security and throughput efficiency of this protocol.展开更多
Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correcti...Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correction ability and low overhead remains a significant challenge.In this paper,a low-overhead fault-tolerant error correction scheme is proposed for quantum communication systems.Firstly,syndrome ancillas are prepared into Bell states to detect errors caused by channel noise.We propose a detection approach that reduces the propagation path of quantum gate fault and reduces the circuit depth by splitting the stabilizer generator into X-type and Z-type.Additionally,a syndrome extraction circuit is equipped with two flag qubits to detect quantum gate faults,which may also introduce errors into the code block during the error detection process.Finally,analytical results are provided to demonstrate the fault-tolerant performance of the proposed FTEC scheme with the lower overhead of the ancillary qubits and circuit depth.展开更多
When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum sig...When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.展开更多
Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to im...Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k-1) threshold scheme. It also takes advantage of classical enhancement of the [2k-1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels.展开更多
We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of ...We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.展开更多
基金Project supported by the National Key R&D Program of China (Grant No.2022YFB3103802)the National Natural Science Foundation of China (Grant Nos.62371240 and 61802175)the Fundamental Research Funds for the Central Universities (Grant No.30923011014)。
文摘Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.
文摘In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved in the computation, and we study the evolution of n-qubit fidelity from the end of one application of the correcting circuit to the end of the next application. We assume that the correcting circuit does not introduce new errors, that it does not increase the execution time (i.e. its application takes zero seconds) and that quantum errors are isotropic. We show that the quantum code increases the fidelity of the states perturbed by quantum errors but that this improvement is not enough to justify the use of quantum codes. Namely, we prove that, taking into account that the time interval between the application of the two corrections is multiplied (at least) by the number of qubits n (due to the coding), the best option is not to use quantum codes, since the fidelity of the uncoded state over a time interval n times smaller is greater than that of the state resulting from the quantum code correction.
基金supported by the National High Technology Research and Development Program of China under Grant No. 2011AA010803
文摘The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60972071)the Natural Science Foundation of Zhejiang Province, China(Grant Nos. Y6100421 and LQ12F02012)the Zhejiang Province Science and Technology Project, China (Grant No. 2009C31060)
文摘We study the performances of quantum channel adaptive [4,1] code transmitting in a joint amplitude damping and dephasing channel, the [6,2] code transmitting in an amplitude damping channel by combining the encoding, noise process, and decoding as one effective channel. We explicitly obtain the entanglement fidelities. The recovery operators of the [6,2] code are given. The performance is nearly optimal compared with that of the optimal method of semidefinite programming.
基金The work was supported in part by Harbin Normal University's Natural Scientific fund items (KM2006-20 and KM2005-14)Educational department scientific Technology item (1151112)Postdoctorate's fund item (LRB-KY01043)Scientific Technology Brainstorm item in Hei Longjiang province
文摘A new description of the additive quantum codes is presented and a new way to construct good quantum codes [[n, k, d]] is given by using classical binary codes with specific properties in F2^3n. We show several consequences and examples of good quantum codes by using our new description of the additive quantum codes.
基金Supported by the Scientific Research Foundation of Hubei Provincial Education Department of China(Q20174503)the National Science Foundation of Hubei Polytechnic University of China(12xjz14A and 17xjz03A)。
文摘In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes,and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields.Moreover,these optimal asymmetric quantum errorcorrecting codes constructed in this paper are different from the ones in the literature.
基金the National Natural Science Foundation of China (Grant Nos. 61972413, 61901525, and 62002385)the National Key R&D Program of China (Grant No. 2021YFB3100100)RGC under Grant No. N HKUST619/17 from Hong Kong, China。
文摘In a recent paper, Hu et al. defined the complete weight distributions of quantum codes and proved the Mac Williams identities, and as applications they showed how such weight distributions may be used to obtain the singleton-type and hamming-type bounds for asymmetric quantum codes. In this paper we extend their study much further and obtain several new results concerning the complete weight distributions of quantum codes and applications. In particular, we provide a new proof of the Mac Williams identities of the complete weight distributions of quantum codes. We obtain new information about the weight distributions of quantum MDS codes and the double weight distribution of asymmetric quantum MDS codes. We get new identities involving the complete weight distributions of two different quantum codes. We estimate the complete weight distributions of quantum codes under special conditions and show that quantum BCH codes by the Hermitian construction from primitive, narrow-sense BCH codes satisfy these conditions and hence these estimate applies.
基金supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.
基金supported by the National Natural Science Foundation of China(No.10990011)
文摘The stabilizer(additive)method and non-additive method for constructing asymmetric quantum codes have been established.In this paper,these methods are generalized to inhomogeneous quantum codes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61802175,61871120,61872184,and 62071240)the Fundamental Research Funds for the Central Universities,China(Grant No.NZ2020021)。
文摘In most practical quantum mechanical systems,quantum noise due to decoherence is highly biased towards dephasing.The quantum state suffers from phase flip noise much more seriously than from the bit flip noise.In this work,we construct new families of asymmetric quantum concatenated codes(AQCCs)to deal with such biased quantum noise.Our construction is based on a novel concatenation scheme for constructing AQCCs with large asymmetries,in which classical tensor product codes and concatenated codes are utilized to correct phase flip noise and bit flip noise,respectively.We generalize the original concatenation scheme to a more general case for better correcting degenerate errors.Moreover,we focus on constructing nonbinary AQCCs that are highly degenerate.Compared to previous literatures,AQCCs constructed in this paper show much better parameter performance than existed ones.Furthermore,we design the specific encoding circuit of the AQCCs.It is shown that our codes can be encoded more efficiently than standard quantum codes.
文摘The self-orthogonal condition is analyzed with respect to symplectic inner product for the binary code that generated by [B1 I B2 B3],where Bi are the binary n ×n matrices,I is an identity matrix.By the use of the binary codes that generated by [B1 I B2 B2B1^T],asymptotic good[[2n ,n ]]additive quantum codes are obtained.
基金Supported by the National Natural Science Foundation of China (No.60403004)the Outstanding Youth Foundation of China (No.0612000500)
文摘It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60773085 and 60801051)the NSFC-KOSEF International Collaborative Research Funds (Grant Nos 60811140346 and F01-2008-000-10021-0)
文摘In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11071255) and Science Foundation for young teachers in Science College, Air Force Engineering University. The authors are very grateful to the anonymous referees and the editors for their valuable comments and suggestions, which help to improve the manuscript significantly.
文摘This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary quasi-cyclic codes are built. Second, three classical construction methods are generalized for new codes from old such that they are suitable for constructing binary self-orthogonal codes, and 62 binary codes and six subcode chains of obtained self-orthogonal codes are designed. Third, six pure binary quantum codes are constructed from the code pairs obtained through Steane construction. There are 66 good binary codes that include 12 optimal linear codes, 45 known optimal linear codes, and nine known optimal self-orthogonal codes. The six pure binary quantum codes all achieve the performance of their additive counterparts constructed by quaternary construction and thus are known optimal codes.
文摘The quantum codes have been generalized to inhomogeneous case and the stabilizer construction has been established to get additive inhomogeneous quantum codes in [Sei. China Math., 2010, 53: 2501-2510]. In this paper, we generalize the known constructions to construct non-additive inhomogeneous quantum codes and get examples of good d-ary quantum codes.
基金The work is supported by was supported by the Shandong Province Higher Educational Science and Technology Program(Grant No.J18KZ012)the National Natural Science Foundation of China(Grant No.11975132,61772295)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2019YQ01).
文摘In this paper,we develop a novel hybrid automatic-repeat-request(ARQ)protocol for the quantum communication system using quantum stabilizer codes.The quantum information is encoded by stabilizer codes to against the channel noise.The twophoton entangled state is prepared for codeword secure transmission.Hybrid ARQ protocol rules the recognition and retransmission of error codewords.In this protocol,the property of quantum entangled state ensures the security of information,the theory of hybrid ARQ system improves the reliability of transmission,the theory of quantum stabilizer codes corrects the flipping errors of codewords.Finally,we verify the security and throughput efficiency of this protocol.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61671087 and 61962009)the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A02)+1 种基金Huawei Technologies Co.Ltd(Grant No.YBN2020085019)the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No.2018BDKFJJ018)。
文摘Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correction ability and low overhead remains a significant challenge.In this paper,a low-overhead fault-tolerant error correction scheme is proposed for quantum communication systems.Firstly,syndrome ancillas are prepared into Bell states to detect errors caused by channel noise.We propose a detection approach that reduces the propagation path of quantum gate fault and reduces the circuit depth by splitting the stabilizer generator into X-type and Z-type.Additionally,a syndrome extraction circuit is equipped with two flag qubits to detect quantum gate faults,which may also introduce errors into the code block during the error detection process.Finally,analytical results are provided to demonstrate the fault-tolerant performance of the proposed FTEC scheme with the lower overhead of the ancillary qubits and circuit depth.
基金The project supported by National Natural Science Foundation of China under Grant No. 60472018, and the Foundation of National Laboratory for Modern Communications
文摘When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61072071)
文摘Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k-1) threshold scheme. It also takes advantage of classical enhancement of the [2k-1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels.
基金supported by the National Basic Research Program of China (Grant No.2010CB328300)the National Natural Science Foundation of China (Grant Nos.60972046 and 60902030)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT0852)the Natural Science Foundation of Shaanxi Province (Grant No.2010JQ8025)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100203120004)the 111 Program (Grant No.B08038)the China Scholarship Council (Grant No.[2008]3019)
文摘We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.