期刊文献+
共找到259篇文章
< 1 2 13 >
每页显示 20 50 100
Mechanism of Universal Quantum Computation in the Brain
1
作者 Aman Chawla Salvatore Domenic Morgera 《Journal of Applied Mathematics and Physics》 2024年第2期468-474,共7页
In this paper, the authors extend [1] and provide more details of how the brain may act like a quantum computer. In particular, positing the difference between voltages on two axons as the environment for ions undergo... In this paper, the authors extend [1] and provide more details of how the brain may act like a quantum computer. In particular, positing the difference between voltages on two axons as the environment for ions undergoing spatial superposition, we argue that evolution in the presence of metric perturbations will differ from that in the absence of these waves. This differential state evolution will then encode the information being processed by the tract due to the interaction of the quantum state of the ions at the nodes with the “controlling’ potential. Upon decoherence, which is equal to a measurement, the final spatial state of the ions is decided and it also gets reset by the next impulse initiation time. Under synchronization, several tracts undergo such processes in synchrony and therefore the picture of a quantum computing circuit is complete. Under this model, based on the number of axons in the corpus callosum alone, we estimate that upwards of 50 million quantum states might be prepared and evolved every second in this white matter tract, far greater processing than any present quantum computer can accomplish. 展开更多
关键词 AXONS quantum computation Metric perturbation DECOHERENCE Time-coded information
下载PDF
Blind quantum computation with a client performing different single-qubit gates
2
作者 吴光阳 杨振 +3 位作者 严玉瞻 罗元茂 柏明强 莫智文 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期326-330,共5页
In the field of single-server blind quantum computation(BQC), a major focus is to make the client as classical as possible. To achieve this goal, we propose two single-server BQC protocols to achieve verifiable univer... In the field of single-server blind quantum computation(BQC), a major focus is to make the client as classical as possible. To achieve this goal, we propose two single-server BQC protocols to achieve verifiable universal quantum computation. In these two protocols, the client only needs to perform either the gate T(in the first protocol) or the gates H and X(in the second protocol). With assistance from a single server, the client can utilize his quantum capabilities to generate some single-qubit states while keeping the actual state of these qubits confidential from others. By using these single-qubit states, the verifiable universal quantum computation can be achieved. 展开更多
关键词 blind quantum computation verifiable blind quantum computation single server
下载PDF
Analysis and improvement of verifiable blind quantum computation
3
作者 Min Xiao Yannan Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期130-140,共11页
In blind quantum computation(BQC),a client with weak quantum computation capabilities is allowed to delegate its quantum computation tasks to a server with powerful quantum computation capabilities,and the inputs,algo... In blind quantum computation(BQC),a client with weak quantum computation capabilities is allowed to delegate its quantum computation tasks to a server with powerful quantum computation capabilities,and the inputs,algorithms and outputs of the quantum computation are confidential to the server.Verifiability refers to the ability of the client to verify with a certain probability whether the server has executed the protocol correctly and can be realized by introducing trap qubits into the computation graph state to detect server deception.The existing verifiable universal BQC protocols are analyzed and compared in detail.The XTH protocol(proposed by Xu Q S,Tan X Q,Huang R in 2020),a recent improvement protocol of verifiable universal BQC,uses a sandglass-like graph state to further decrease resource expenditure and enhance verification capability.However,the XTH protocol has two shortcomings:limitations in the coloring scheme and a high probability of accepting an incorrect computation result.In this paper,we present an improved version of the XTH protocol,which revises the limitations of the original coloring scheme and further improves the verification ability.The analysis demonstrates that the resource expenditure is the same as for the XTH protocol,while the probability of accepting the wrong computation result is reduced from the original minimum(0.866)^(d*)to(0.819)^(d^(*)),where d;is the number of repeated executions of the protocol. 展开更多
关键词 verifiable blind quantum computation universal blind quantum computation measurement-based quantum computation
下载PDF
A concise review of Rydberg atom based quantum computation and quantum simulation 被引量:6
4
作者 Xiaoling Wu Xinhui Liang +5 位作者 Yaoqi Tian Fan Yang Cheng Chen Yong-Chun Liu Meng Khoon Te Li You 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期1-22,共22页
Quantum information processing based on Rydberg atoms emerged as a promising direction two decades ago.Recent experimental and theoretical progresses have shined exciting light on this avenue.In this concise review,we... Quantum information processing based on Rydberg atoms emerged as a promising direction two decades ago.Recent experimental and theoretical progresses have shined exciting light on this avenue.In this concise review,we will briefly introduce the basics of Rydberg atoms and their recent applications in associated areas of neutral atom quantum computation and simulation.We shall also include related discussions on quantum optics with Rydberg atomic ensembles,which are increasingly used to explore quantum computation and quantum simulation with photons. 展开更多
关键词 quantum computation quantum simulation Rydberg atom quantum nonlinear optics
下载PDF
Quantum computation and error correction based on continuous variable cluster states 被引量:4
5
作者 Shuhong Hao Xiaowei Deng +3 位作者 Yang Liu Xiaolong Su Changde Xie Kunchi Peng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期18-27,共10页
Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible w... Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables. 展开更多
关键词 quantum computation quantum error correction continuous variables cluster state
下载PDF
Quantum computation with two-dimensional graphene quantum dots 被引量:1
6
作者 Li Jie-Sen Li Zhi-Bing Yao Dao-Xin 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期442-448,共7页
We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine elec... We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. 展开更多
关键词 GRAPHENE quantum dot quantum computation Kagome lattice
下载PDF
Full-Blind Delegating Private Quantum Computation 被引量:1
7
作者 Wenjie Liu Zhenyu Chen +2 位作者 Jinsuo Liu Zhaofeng Su Lianhua Chi 《Computers, Materials & Continua》 SCIE EI 2018年第8期211-223,共13页
The delegating private quantum computation(DQC)protocol with the universal quantum gate set{X,Z,H,P,R,CNOT}was firstly proposed by Broadbent et al.[Broadbent(2015)],and then Tan et al.[Tan and Zhou(2017)]tried to put ... The delegating private quantum computation(DQC)protocol with the universal quantum gate set{X,Z,H,P,R,CNOT}was firstly proposed by Broadbent et al.[Broadbent(2015)],and then Tan et al.[Tan and Zhou(2017)]tried to put forward a half-blind DQC protocol(HDQC)with another universal set{H,P,CNOT,T}.However,the decryption circuit of Toffoli gate(i.e.T)is a little redundant,and Tan et al.’s protocol[Tan and Zhou(2017)]exists the information leak.In addition,both of these two protocols just focus on the blindness of data(i.e.the client’s input and output),but do not consider the blindness of computation(i.e.the delegated quantum operation).For solving these problems,we propose a full-blind DQC protocol(FDQC)with quantum gate set{H,P,CNOT,T},where the desirable delegated quantum operation,one of{H,P,CNOT,T},is replaced by a fixed sequence(H,P,CZ,CNOT,T)to make the computation blind,and the decryption circuit of Toffoli gate is also optimized.Analysis shows that our protocol can not only correctly perform any delegated quantum computation,but also holds the characteristics of data blindness and computation blindness. 展开更多
关键词 Delegating private quantum computation universal quantum gate set full-blind Toffoli gate circuit optimization
下载PDF
Universal quantum computation using all-optical hybrid encoding 被引量:1
8
作者 郭奇 程留永 +1 位作者 王洪福 张寿 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期46-52,共7页
By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits e... By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing. 展开更多
关键词 quantum computation linear optics cross-Kerr nonlinearities
下载PDF
Quantum simulation and quantum computation of noisy-intermediate scale
9
作者 Kai Xu Heng Fan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期1-7,共7页
In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next yea... In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next years, while noises in manipulation of quantum states may still be inevitable even the precision will improve. For research in this direction, it is necessary to review the available results about noisy multiqubit quantum computation and quantum simulation. The review focuses on multiqubit state generations, quantum computational advantage, and simulating physics of quantum many-body systems. Perspectives of near term noisy intermediate-quantum processors will be discussed. 展开更多
关键词 quantum computation quantum simulation many-body physics quantum supremacy noisy intermediate-scale quantum technologies
下载PDF
Quantum computation and simulation with vibrational modes of trapped ions
10
作者 Wentao Chen Jaren Gan +2 位作者 Jing-Ning Zhang Dzmitry Matuskevich Kihwan Kim 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期1-17,共17页
Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource,beyond the role as a mediator for entangling quantum operations on internal degrees of freedom,because o... Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource,beyond the role as a mediator for entangling quantum operations on internal degrees of freedom,because of the large available Hilbert space.The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimensions.Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes,including bosonic encoding schemes in quantum information,reliable and efficient measurement techniques,and quantum operations that allow various quantum simulations and quantum computation algorithms.We describe experiments using the vibrational modes,including the preparation of non-classical states,molecular vibronic sampling,and applications in quantum thermodynamics.We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing. 展开更多
关键词 quantum computation quantum simulation trapped ions vibrational modes
下载PDF
Efficient self-testing system for quantum computations based on permutations
11
作者 Shuquan Ma Changhua Zhu +1 位作者 Min Nie Dongxiao Quan 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期61-73,共13页
Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficien... Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficiently simulating a large-scale quantum computation on a classical computer is usually thought to be impossible.To overcome this difficulty,we propose a self-testing system for quantum computations,which can be used to verify if a quantum computation is performed correctly by itself.Our basic idea is using some extra ancilla qubits to test the output of the computation.We design two kinds of permutation circuits into the original quantum circuit:one is applied on the ancilla qubits whose output indicates the testing information,the other is applied on all qubits(including ancilla qubits) which is aiming to uniformly permute the positions of all qubits.We show that both permutation circuits are easy to achieve.By this way,we prove that any quantum computation has an efficient self-testing system.In the end,we also discuss the relation between our self-testing system and interactive proof systems,and show that the two systems are equivalent if the verifier is allowed to have some quantum capacity. 展开更多
关键词 quantum computation VERIFICATION self-testing systems complexity theory
下载PDF
Low-temperature environments for quantum computation and quantum simulation
12
作者 Hailong Fu Pengjie Wang +2 位作者 Zhenhai Hu Yifan Li Xi Lin 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期45-58,共14页
This review summarizes the requirement of low temperature conditions in existing experimental approaches to quantum computation and quantum simulation.
关键词 low temperature physics refrigerators quantum computation quantum simulation
下载PDF
Solid-state quantum computation station
13
作者 Fanming Qu Zhongqing Ji +1 位作者 Ye Tian Shiping Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期1-7,共7页
Solid-state quantum computation station belongs to the group 2 of manipulation of quantum state in the Synergetic Extreme Condition User Facility. Here we will first outline the research background, aspects, and objec... Solid-state quantum computation station belongs to the group 2 of manipulation of quantum state in the Synergetic Extreme Condition User Facility. Here we will first outline the research background, aspects, and objectives of the station, followed by a discussion of the recent scientific as well as technological progress in this field based on similar experimental facilities to be constructed in the station. Finally, a brief summary and research perspective will be presented. 展开更多
关键词 quantum computation superconducting qubit topological quantum state Majorana fermion
下载PDF
Quantum Computation with Two-Level Systems in Current-Biased Josephson Junction
14
作者 余龙宝 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第5期855-860,共6页
We present a feasible scheme that realizes quantum computation using the two-level systems (TLSs) in Current-biased Josephson junction (CBJJ) under the present experimental technology. Effective manipulation of th... We present a feasible scheme that realizes quantum computation using the two-level systems (TLSs) in Current-biased Josephson junction (CBJJ) under the present experimental technology. Effective manipulation of the TLSs by CBJJ serving as register qubit can be obtained, such as initialization, single-qubit rotations, two-qubit gates, entanglement generation, and read out, etc. In addition, we also discuss the experimental feasibility and efficiency of the scheme. 展开更多
关键词 quantum computation two-level system superconducting qubit
下载PDF
Nonadiabatic Geometric Quantum Computation with Asymmetric Superconducting Quantum Interference Device
15
作者 HAO San-Ru HOU Bo-Yu XI Xiao-Qiang YUE Rui-Hong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第3期285-291,共7页
We propose a method of controlling the dc-SQUID (superconducting quantum interference device) system by changing the gate voltages, which controls the amplitude of the fictitious magnetic fields B-z, and the externall... We propose a method of controlling the dc-SQUID (superconducting quantum interference device) system by changing the gate voltages, which controls the amplitude of the fictitious magnetic fields B-z, and the externally applied current that produces the piercing magnetic flux Phi(x) for the dc-SQUID system. We have also introduced a physical model for the dc-SQUID system. Using this physical model, one can obtain the non-adiabatic geometric phase gate for the single qubit and the non-adiabatic conditional geometric phase gate (controlled NOT gate) for the two qubits. It is shown that when the gate voltage and the externally applied current of the dc-SQUID system satisfies an appropriate constraint condition, the charge state evolution can be controlled exactly on a dynamic phase free path. The non-adiabatic evolution of the charge states is given as well. 展开更多
关键词 non-adiabatic geometric phase gate DC-SQUID quantum computation
下载PDF
Quantum computation and simulation with superconducting qubits
16
作者 Kaiyong He Xiao Geng +2 位作者 Rutian Huang Jianshe Liu Wei Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期1-17,共17页
Superconducting circuits based on Josephson junctions are regarded as one of the most promising technologies for the implementation of scalable quantum computers.This review presents the basic principles of supercondu... Superconducting circuits based on Josephson junctions are regarded as one of the most promising technologies for the implementation of scalable quantum computers.This review presents the basic principles of superconducting qubits and shows the progress of quantum computing and quantum simulation based on superconducting qubits in recent years.The experimental realization of gate operations,readout,error correction codes,as well as some quantum algorithms are summarized,followed by an introduction of quantum simulation.And then some important applications in fields including condensed matter physics,quantum annealing,and quantum chemistry are discussed. 展开更多
关键词 quantum computation quantum simulation superconducting qubit
下载PDF
Quantum Computation with Nonlinear Optics
17
作者 LIU Yang ZHANG Wen-Hong +1 位作者 ZHANG Cun-Lin LONG Gui-Lu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第1期107-110,共4页
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operat... We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple. 展开更多
关键词 quantum computation nonlinear optics parametric up(down)-conversion polarization modulator
下载PDF
Dynamical-corrected nonadiabatic geometric quantum computation
18
作者 Cheng-Yun Ding Li Chen +1 位作者 Li-Hua Zhang Zheng-Yuan Xue 《Frontiers of physics》 SCIE CSCD 2023年第6期263-273,共11页
Recently,nonadiabatic geometric quantum computation has been received great attentions,due to its fast operation and intrinsic error resilience.However,compared with the corresponding dynamical gates,the robustness of... Recently,nonadiabatic geometric quantum computation has been received great attentions,due to its fast operation and intrinsic error resilience.However,compared with the corresponding dynamical gates,the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop geometric scheme still has the same order of magnitude due to the requirement of strict multi-segment geometric controls,and the inherent geometric fault-tolerance characteristic is not fully explored.Here,we present an effective geometric scheme combined with a general dynamical-corrected technique,with which the super-robust nonadiabatic geometric quantum gates can be constructed over the conventional single-loop geometric and two-loop composite-pulse geometric strategies,in terms of resisting the systematic error,i.e.,σ_(x)error.In addition,combined with the decoherence-free subspace(DFS)coding,the resulting geometric gates can also effectively suppress theσ_(z)error caused by the collective dephasing.Notably,our protocol is a general one with simple experimental setups,which can be potentially implemented in different quantum systems,such as Rydberg atoms,trapped ions and superconducting qubits.These results indicate that our scheme represents a promising way to explore large-scale fault-tolerant quantum computation. 展开更多
关键词 geometric phases dynamical-corrected gates fault-tolerant quantum computation
原文传递
Quantum circuit-based proxy blind signatures:A novel approach and experimental evaluation on the IBM quantum cloud platform
19
作者 娄小平 昝慧茹 徐雪娇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期247-253,共7页
This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a... This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution. 展开更多
关键词 proxy blind signature quantum circuits quantum computation IBM quantum cloud platform
下载PDF
The exchange interaction between neighboring quantum dots:physics and applications in quantum information processing
20
作者 Zheng Zhou Yixin Li +3 位作者 Zhiyuan Wu Xinping Ma Shichang Fan Shaoyun Huang 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期20-34,共15页
Electron spins confined in semiconductor quantum dots(QDs)are one of potential candidates for physical implementation of scalable quantum information processing technologies.Tunnel coupling based inter exchange intera... Electron spins confined in semiconductor quantum dots(QDs)are one of potential candidates for physical implementation of scalable quantum information processing technologies.Tunnel coupling based inter exchange interaction between QDs is crucial in achieving single-qubit manipulation,two-qubit gate,quantum communication and quantum simulation.This review first provides a theoretical perspective that surveys a general framework,including the Helter−London approach,the Hund−Mulliken approach,and the Hubbard model,to describe the inter exchange interactions between semiconductor quantum dots.An electrical method to control the inter exchange interaction in a realistic device is proposed as well.Then the significant achievements of inter exchange interaction in manipulating single qubits,achieving two-qubit gates,performing quantum communication and quantum simulation are reviewed.The last part is a summary of this review. 展开更多
关键词 exchange interaction quantum dots tunnel coupling quantum computation
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部