期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Inorganic Halide Perovskite Quantum Dots:A Versatile Nanomaterial Platform for Electronic Applications 被引量:1
1
作者 Chien‑Yu Huang Hanchen Li +7 位作者 Ye Wu Chun‑Ho Lin Xinwei Guan Long Hu Jiyun Kim Xiaoming Zhu Haibo Zeng Tom Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期1-31,共31页
Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance.Among these,inorganic perovskite quantum dots(QDs)stand out... Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance.Among these,inorganic perovskite quantum dots(QDs)stand out for their prominent merits,such as quantum confinement effects,high photoluminescence quantum yield,and defect-tolerant structures.Additionally,ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices.This review presents the state-of-the-art research progress on inorganic perovskite QDs,emphasizing their electronic applications.In detail,the physical properties of inorganic perovskite QDs will be introduced first,followed by a discussion of synthesis methods and growth control.Afterwards,the emerging applications of inorganic perovskite QDs in electronics,including transistors and memories,will be presented.Finally,this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies. 展开更多
关键词 Inorganic perovskite quantum dots ELECTRONICS NANOCRYSTALS quantum confinement effects
下载PDF
Tight-binding study of quantum transport in nanoscale GaAs Schottky MOSFET
2
作者 Zahra Ahangari Morteza Fathipour 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期634-639,共6页
This paper explores the band structure effect to elucidate the feasibility of an ultra-scaled GaAs Schottky MOSFET (SBFET) in a nanoscale regime. We have employed a 20-band sp3dSs* tight-binding (TB) approach to ... This paper explores the band structure effect to elucidate the feasibility of an ultra-scaled GaAs Schottky MOSFET (SBFET) in a nanoscale regime. We have employed a 20-band sp3dSs* tight-binding (TB) approach to compute E - K dis- persion. The considerable difference between the extracted effective masses from the TB approach and bulk values implies that quantum confinement affects the device performance. Beside high injection velocity, the ultra-scaled GaAs SBFET suffers from a low conduction band DOS in the F valley that results in serious degradation of the gate capacitance. Quan- tum confinement also results in an increment of the effective Schottky barrier height (SBH). Enhanced Schottky barriers form a double barrier potential well along the channel that leads to resonant tunneling and alters the normal operation of the SBFET. Major factors that may lead to resonant tunneling are investigated. Resonant tunneling occurs at low temperatures and low drain voltages, and gradually diminishes as the channel thickness and the gate length scale down. Accordingly, the GaAs (100) SBFET has poor ballistic performance in nanoscale regime. 展开更多
关键词 band structure quantum confinement effects resonant tunneling Schottky MOSFET
下载PDF
On the binding energies of excitons in polar quantum well structures in a weak electric field 被引量:2
3
作者 吴云峰 梁希侠 K.K.Bajaj 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第11期2314-2319,共6页
The binding energies of excitons in quantum well structures subjected to an applied uniform electric field by taking into account the exciton longitudinal optical phonon interaction is calculated. The binding energies... The binding energies of excitons in quantum well structures subjected to an applied uniform electric field by taking into account the exciton longitudinal optical phonon interaction is calculated. The binding energies and corresponding Stark shifts for Ⅲ-Ⅴ and Ⅱ-Ⅵ compound semiconductor quantum well structures have been numerically computed. The results for GaAs/A1GaAs and ZnCdSe/ZnSe quantum wells are given and discussed. Theoretical results show that the exciton-phonon coupling reduces both the exciton binding energies and the Stark shifts by screening the Coulomb interaction. This effect is observable experimentally and cannot be neglected. 展开更多
关键词 quantum confined stark effects EXCITON quantum well
下载PDF
Phonon thermal transport properties of XB_(2)(X=Mg and Al)compounds:considering quantum confinement and electron-phonon interaction
4
作者 Sen Liu Zheng Chang +3 位作者 Xiao-Liang Zhang Kun-Peng Yuan Yu-Fei Gao Da-Wei Tang 《Rare Metals》 SCIE EI CAS CSCD 2023年第9期3064-3074,共11页
XB_(2)(X=Mg and Al)compounds have drawn great attention for their superior electronic characteristics and potential applications in semiconductors and superconductors.The study of phonon thermal transport properties o... XB_(2)(X=Mg and Al)compounds have drawn great attention for their superior electronic characteristics and potential applications in semiconductors and superconductors.The study of phonon thermal transport properties of XB_(2)is significant to their application and mechanism behind research.In this work,the phonon thermal transport properties of three-dimensional(3D)and two-dimensional(2D)XB_(2)were studied by first-principles calculations.After considering the electron-phonon interaction(EPI),the thermal conductivities(TCs)of 3D Mg B_(2)and 3D Al B_(2)decrease by 29%and 16%which is consistent with experimental values.Moreover,the underlying mechanisms of reduction on lattice TCs are the decrease in phonon lifetime and heat capacity when considering quantum confinement effect.More importantly,we are surprised to find that there is a correlation between quantum confinement effect and EPI.The quantum confinement will change the phonon and electron characteristics which has an impact on EPI.Overall,our work is expected to provide insights into the phonon thermal transport properties of XB_(2)compounds considering EPI and quantum confinement effect. 展开更多
关键词 SUPERCONDUCTOR Phonon thermal transport properties Electron-phonon interaction(EPI) quantum confinement effect
原文传递
Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers
5
作者 Yuping Gao Xiyue Dong Yongsheng Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期163-181,共19页
Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites ca... Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along < 100 > orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells(PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs. 展开更多
关键词 Layered perovskite solar cells Aromatic spacers quantum and dielectric confinement effects Charge transport Efficiency and stability
下载PDF
Novel method to determine effective length of quantum confinement using fractional-dimension space approach 被引量:2
6
作者 Hua Li Bing-Can Liu +2 位作者 Bing-Xin Shi Si-Yu Dong Qiang Tian 《Frontiers of physics》 SCIE CSCD 2015年第4期97-102,共6页
The binding energy and effective mass of a polaron confined in a GaAs film deposited on an AlGal-xAs substrate are investigated, for different film thickness values and aluminum concentra- tions and within the framewo... The binding energy and effective mass of a polaron confined in a GaAs film deposited on an AlGal-xAs substrate are investigated, for different film thickness values and aluminum concentra- tions and within the framework of the fractional-dimensional space approach. Using this scheme, we propose a new method to define the effective length of the quantum confinement. The limita- tions of the definition of the original effective well width are discussed, and the binding energy and effective mass of a polaron confined in a GaAs film are obtained. The fl-actional-dimensional theo- retical results are shown to be in good agreement with previous, more detailed calculations based on second-order perturbation theory. 展开更多
关键词 fractional-dimensional approach effective length of quantum confinement polaron effect GaAs film
原文传递
Silicon nanoparticles: Preparation, properties, and applications 被引量:1
7
作者 常欢 孙树清 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期23-36,共14页
Silicon nanoparticles have attracted great attention in the past decades because of their intriguing physical properties, active surface state, distinctive photoluminescence and biocompatibility. In this review, we pr... Silicon nanoparticles have attracted great attention in the past decades because of their intriguing physical properties, active surface state, distinctive photoluminescence and biocompatibility. In this review, we present some of the recent progress in preparation methodologies and surface functionalization approaches of silicon nanoparticles. Further, their promising applications in the fields of energy and electronic engineering are introduced. 展开更多
关键词 SILICON NANOPARTICLE quantum confinement effect optical performance
下载PDF
Photoluminescence Properties of Nanocrystalline 3C-SiC Films
8
作者 YUWei LU Xue-qin LU Wan-bing HAN Li FU Guang-sheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期215-219,共5页
Nanocrystalline (nc) 3C-SiC films on the Si substrate were prepared by the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. With the SiH4-CH4 gas flow ratio changing, the films exhibit ... Nanocrystalline (nc) 3C-SiC films on the Si substrate were prepared by the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. With the SiH4-CH4 gas flow ratio changing, the films exhibit different photoluminescence (PL) characteristics. Under the stoichiometric condition, the PL peak redshift from 470 nm to 515 nm is detected with the increase of excitation wavelength, which can be attributed to the quantum confinement effect radiation of 3C-SiC nanocrystals of different sizes. However, the appearance of an additional PL band at 436 nm in Si-rich film might be sourced back to the excess of Si defect centers in it. This is also the case for C-rich film for its PL band lying at 570 nm. The results above quoted indicate an important influence of gas flow ratio on the PL properties of the SiC films providing an effective guidance for analyzing the luminescence mechanism and exploring the high-efficiency light emission of the SiC films. 展开更多
关键词 SiC film PHOTOLUMINESCENCE quantum confinement effect DEFECT
下载PDF
Band structure of silicon and germanium thin films based on first principles
9
作者 吴学科 黄伟其 +4 位作者 黄忠梅 秦朝建 董泰阁 王刚 唐延林 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期478-482,共5页
In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties, in which directional optical properties can be exploited to enhance the performance of optoelectronic... In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties, in which directional optical properties can be exploited to enhance the performance of optoelectronic devices. First principles calculation based on density functional theory (DFT) with the generalized gradient approximation (GGA) are carried out to investigate the energy band gap structure on silicon (Si) and germanium (Ge) nanofilms. Simulation results show that the band gaps in Si (100) and Ge (111) nanofilms become the direct-gap structure in the thickness range less than 7.64 nm and 7.25 nm respectively, but the band gaps of Si (111) and Ge (110) nanofilms still keep in an indirect-gap structure and are independent on film thickness, and the band gaps of Si (110) and Ge (100) nanofilms could be transferred into the direct-gap structure in nanofilms with smaller thickness. It is amazing that the band gaps of Si(1-x)/ZGexSi(1-x)/2 sandwich structure become the direct-gap structure in a certain area whether (111) or (100) surface. The band structure change of Si and Ge thin films in three orientations is not the same and the physical mechanism is very interesting, where the changes of the band gaps on the Si and Ge nanofilms follow the quantum confinement effects. 展开更多
关键词 direct band gap first principles calculation quantum confinement effect NANOFILMS
下载PDF
Metallic Graphene Nanoribbons
10
作者 Sheng‑Yi Xie Xian‑Bin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期194-196,共3页
Isolated graphene nanoribbons(GNRs)usually have energy gaps,which scale with their widths,owing to the lateral quantum confinement effect of GNRs.The absence of metallic GNRs limits their applications in device interc... Isolated graphene nanoribbons(GNRs)usually have energy gaps,which scale with their widths,owing to the lateral quantum confinement effect of GNRs.The absence of metallic GNRs limits their applications in device interconnects or being one-dimensional physics platform to research amazing properties based on metallicity.A recent study published in Science provided a novel method to produce metallic GNRs by inserting a symmetric superlattice into other semiconductive GNRs.This finding will broader the applications of GNRs both in nanoelectronics and fundamental science. 展开更多
关键词 GRAPHENE NANORIBBONS quantum confinement effect Supperlattice
下载PDF
Physical Parameter Variation Analysis on the Performance Characteristics of Nano DG-MOSFETs
11
作者 Yashu Swami Sanjeev Rai 《Circuits and Systems》 2021年第4期39-53,共15页
DG-MOSFETs are the most widely explored device architectures for na</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="f... DG-MOSFETs are the most widely explored device architectures for na</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">no-scale CMOS circuit design in sub-50 nm due to the improved subthre</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">shold slope and the reduced leakage power compared to bulk MOSFETs. In thin-film (</span><i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">si</span></sub></i><span style="font-family:Verdana;"> < 10 nm) DG-MOS structures, charge carriers are affected</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> by</span></span></span><span><span><span style="font-family:""> <i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">si</span></sub></i><span style="font-family:Verdana;">-</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">induced quantum confinement along with the confinement caused by </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">very high electric field at the interface. Therefore, quantum confinement effects on the device characteristics are also quite important and it needs to be incorpo</span><span style="font-family:Verdana;">rated along with short channel effects for nano-scale circuit design. In this</span> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">paper</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, we analyze</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a DG-MOSFET structure at </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">20 nm technology node</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> incorporating quantum confinement effects and various short channel effects. The effect of physical parameter variations on performance characteristics of </span><span><span style="font-family:Verdana;">the device such as threshold voltage, subthreshold slope, </span><i><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">ON</span></sub></i><span style="font-family:Verdana;"> - </span><i><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">OFF</span></sub></i><span style="font-family:Verdana;"> ratio,</span></span> <i><span style="font-family:Verdana;">DIBL</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> etc. has been investigated and plotted through extensive TCAD simulations. The physical parameters considered in this </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">paper</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> are operating temperature </span><span><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">T</span><sub><span style="font-family:Verdana;">op</span></sub></i><span style="font-family:Verdana;">), channel doping concentration (</span><i><span style="font-family:Verdana;">N</span><sub><span style="font-family:Verdana;">c</span></sub></i><span style="font-family:Verdana;">), gate oxide thickness (</span><i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">ox</span></sub></i><span style="font-family:Verdana;">) an</span></span><span style="font-family:Verdana;">d Silicon film thickness (</span><i><span style="font-family:Verdana;">t</span><sub><span style="font-family:Verdana;">si</span></sub></i><span style="font-family:Verdana;">). It </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> observed that quantum confinement of </span><span style="font-family:Verdana;">charge </span><span style="font-family:Verdana;">carriers significantly affect</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the performance characteristics (mostly the</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> subth</span><span style="font-family:Verdana;">reshold characteristics) of the device and therefore, it cannot be ignored in</span><span style="font-family:Verdana;"> the </span><span style="font-family:Verdana;">subthreshold region</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">based circuit design like in many previous research</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> works. </span><span><span style="font-family:Verdana;">The ATLAS</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> device simulator has been used in this </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">paper</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to perform simu</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">lation and parameter extraction. The TCAD analysis presented in the</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> manuscript can be incorporated for device modeling and device</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> matching. It can be used to illustrate exact device behavior and for proper device control. 展开更多
关键词 Nano DG-MOSFET quantum confinement effects Thin Film Structures Short Channel effects Performance Characteristics
下载PDF
Electrically pumped terahertz laser based on a topological insulator quantum dot array
12
作者 YongWei Huang LiKun Shi +4 位作者 Jun Li WenKai Lou HuiHong Yuan Wen Yang Kai Chang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2021年第1期82-90,共9页
The energy level separation between the edge states in topological insulator quantum dots lies in the terahertz(THz) range.Quantum confinement ensures the nonuniformity of the energy level separation near the Dirac po... The energy level separation between the edge states in topological insulator quantum dots lies in the terahertz(THz) range.Quantum confinement ensures the nonuniformity of the energy level separation near the Dirac point. Based on these features, we propose that a topological insulator quantum dot array can be operated as an electrically pumped continuous-wave THz laser. The proposed device can operate at room temperature, with power exceeding 10 mW and quantum efficiency reaching ~50%. This study may promote the usage of topological insulator quantum dots as an important source of THz radiation. 展开更多
关键词 TERAHERTZ topological insulator quantum dot and quantum confinement effect
原文传递
Recent progresses on InGaN quantum dot light-emitting diodes
13
作者 Lai WANG Wenbin LV Zhibiao HAO Yi LUO 《Frontiers of Optoelectronics》 CSCD 2014年第3期293-299,共7页
InGaN quantum dots (QDs) have attracted many research interests in recent years for their potentials to realize long wavelength visible emission from green to red, which can pave a way to fabricate the phosphor-free... InGaN quantum dots (QDs) have attracted many research interests in recent years for their potentials to realize long wavelength visible emission from green to red, which can pave a way to fabricate the phosphor-free white light emitting diodes (LEDs). In this paper, we reported our recent progresses on InGaN QD LEDs, the discussions were dedicated to the basic physics model of the strain relaxation in self-assembled InGaN QDs, the growth of InGaN QDs with a growth interruption method by metal organic vapor phase epitaxy, the optimization of GaN barrier growth in multilayer InGaN QDs, the demonstration of green, yellow-green and red InGaN QD LEDs, and future challenges. 展开更多
关键词 quantum dot (QD) INGAN light emitting diode (LED) quantum confined Stark effect (QCSE)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部