期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Confinement of gold quantum dot arrays inside ordered mesoporous silica thin film
1
作者 池雅庆 仲海钦 +2 位作者 张学骜 方粮 常胜利 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第12期1-4,共4页
Periodic disposed quantum dot arrays are very useful for the large scale integration of single electron devices. Gold quantum dot arrays were self-assembled inside pore channels of ordered amino-functionalized mesopor... Periodic disposed quantum dot arrays are very useful for the large scale integration of single electron devices. Gold quantum dot arrays were self-assembled inside pore channels of ordered amino-functionalized mesoporous silica thin films, employing the neutralization reaction between chloroauric acid and amino groups. The diameters of quantum dots are controlled via changing the aperture of pore channels from 2.3 to 8.3 nm, which are characterized by HRTEM, SEM and FT-IR. UV-vis absorption spectra of gold nanoparticle/mesoporous silica composite thin films exhibit a blue shift and intensity drop of the absorption peak as the aperture of mesopores decreases, which represents the energy level change of quantum dot arrays due to the quantum size effect. 展开更多
关键词 gold quantum dot array mesoporous silica quantum size effect single electron device
原文传递
Composite Semiconductor Quantum Dots CdSe/CdS Co-sensitized TiO_2 Nanorod Array Solar Cells 被引量:1
2
作者 汪竞阳 章天金 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期876-880,共5页
CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption... CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption and reaction (SILAR) process. The structural and morphological properties of the samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results indicate that CdSe/CdS QDs are uniformly coated on the surface of the TiO2 nanorods. The shift of light absorption edge was monitored by taking UV-visible absorption spectra. Compared with the absorption spectra of the TiO2 nanorod array, deposition of CdSe/CdS QDs shifts the absorption edge to the higher wavelength. The enhanced light absorption in the visible-light region of CdSe/CdS/TiO2 nanorod array indicates that CdSe/CdS layers can act as co-sensitizers in quantum dots sensitized solar cells (QDSSCs). By optimizing the CdSe layer deposition cycles, a photocurrent of 5.78 mA/cm2, an open circuit photovoltage of 0.469 V and a conversion efficiency of 1.34 % were obtained under an illumination of 100 mw/cm2. 展开更多
关键词 quantum dots TiO2 nanorod array solar cells photovoltaic performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部