We reported a low-cost and easy-to-make method to effectively generate quantum dot(QD)states in 2D hBN films for quantum emissions at room temperature by utilizing silica nanospheres,in comparison with the sophisticat...We reported a low-cost and easy-to-make method to effectively generate quantum dot(QD)states in 2D hBN films for quantum emissions at room temperature by utilizing silica nanospheres,in comparison with the sophisticated nanofabrication method reported in previous studies.The QDs created in 2D hBN films using silica nanospheres exhibit pronounced photon emissions with a good photo-stability in air,a narrow distribution of the emission peaks within the range of 580-620 nm,and a directional emission pattern,behaving as a single electric dipole.Our work develops the method of controllable fabrication of quantum emitters in 2D materials by using nano materials and structures.展开更多
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca...Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.展开更多
In the classical lattice theory, solitons and localized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist ...In the classical lattice theory, solitons and localized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist or not in the one-dimensional lattice chains is an interesting problem. By using the number state method and the Hartree approximation combined with the method of multiple scales, we investigate quantum solirons and localized modes in a one-dimensional lattice chain with the nonlinear substrate potential. It is shown that quantum solitons do exist in this nonlinear lattice chain, and at the boundary of the phonon Brillouin zone, quantum solitons become quantum localized modes, phonons are pinned to the lattice of the vicinity at the central position j = j0.展开更多
Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doub...Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doubled when compared with the prepare-and-measure QKD. An interesting question is whether the transmission distance can be extended further. In this work, we consider the contributions of the two-way local operations and classical communications to the key generation rate and transmission distance of the MDI-QKD. Our numerical results show that the secure transmission distances are increased by about 12kin and 8 km when the 1 13 and the 2 B steps are implemented, respectively.展开更多
We present a numerical study of a model of quantum walk in a periodic potential on a line. We take the simple view that different potentials have different affects on the way in which the coin state of the walker is c...We present a numerical study of a model of quantum walk in a periodic potential on a line. We take the simple view that different potentials have different affects on the way in which the coin state of the walker is changed. For simplicity and definiteness, we assume that the walker's coin state is unaffected at sites without the potential, and rotated in an unbiased way according to the Hadamard matrix at sites with the potential. This is the simplest and most natural model of a quantum walk in a periodic potential with two coins. Six generic cases of such quantum walks are studied numerically. It is found that, of the six cases, four cases display significant localization effect where the walker is confined in the neighborhood of the origin for a sufficiently long time. Associated with such a localization effect is the recurrence of the probability of the walker returning to the neighborhood of the origin.展开更多
The effect of external noise, which is characterized by an Ornstein-Uhlenbeck process, on the dynamical localization of two coupling electrons in a quantum dot array under the action of an ac electric field is studied...The effect of external noise, which is characterized by an Ornstein-Uhlenbeck process, on the dynamical localization of two coupling electrons in a quantum dot array under the action of an ac electric field is studied. A numerical solution of the stochastic equations is obtained by averaging over stochastic trajectories. The results show that the external noise may destroy the dynamical localization, but the anti-noise capacity of the system is stronger when the two electrons are localized at the ends of the quantum dot array.展开更多
We analyze the localization of quantum walks on a one-dimensional finite graph using vector-distance. We first vectorize the probability distribution of a quantum walker in each node. Then we compute out the probabili...We analyze the localization of quantum walks on a one-dimensional finite graph using vector-distance. We first vectorize the probability distribution of a quantum walker in each node. Then we compute out the probability distribution vectors of quantum walks in infinite and finite graphs in the presence of static disorder respectively, and get the distance between these two vectors. We find that when the steps taken are small and the boundary condition is tight, the localization between the infinite and finite cases is greatly different. However, the difference is negligible when the steps taken are large or the boundary condition is loose. It means quantum walks on a one-dimensional finite graph may also suffer from localization in the presence of static disorder. Our approach and results can be generalized to analyze the localization of quantum walks in higher-dimensional cases.展开更多
A flattened elliptic ring containing an electron is studied. The emphasis is placed on clarifying the effect of the flattening. The localized states are classified into four types according to their inherent nodes. Wh...A flattened elliptic ring containing an electron is studied. The emphasis is placed on clarifying the effect of the flattening. The localized states are classified into four types according to their inherent nodes. When the ring becomes more flattened, the total probability of dipole absorption of each state is found to be reduced. Furthermore, each spectral line of absorption is found to shift towards red and may split into a few lines, and these lines as a whole become more diffusive.展开更多
A modified continuous-variable quantum key distribution (CVQKD) protocol is proposed by originating the entangled source from a malicious third party Eve in the middle instead of generating it from the trustworthy A...A modified continuous-variable quantum key distribution (CVQKD) protocol is proposed by originating the entangled source from a malicious third party Eve in the middle instead of generating it from the trustworthy Alice or Bob. This method is able to enhance the efficiency of the CVQKD scheme attacked by local oscillator (LO) intensity attack in terms of the generated secret key rate in quantum communication. The other indication of the improvement is that the maximum transmission distance and the maximum loss tolerance can be increased significantly, especially for CVQKD schemes based on homodyne detection.展开更多
Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger ...Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original "global" one, this "new" algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M = 1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed.展开更多
Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is i...Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.展开更多
We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupat...We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupation probability shows that both the intra-and inter-dot Coulomb interaction can increase the localization of electrons even when the AC field is not very large. The mechanical oscillation of the quantum dot shuttles may keep the localization of electrons at a high level within a range if its frequency is quite a bit smaller than the AC field. However, the localization may be depressed if the frequency of the mechanical oscillation is the integer times of the frequency of the AC field. We also derive the analytical condition of two-electron localization both for triple quantum dots and quantum dot shuttles within the Floquet formalism.展开更多
We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level syste...We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level system, we derive the transi- tionless driving Hamiltonian for the local adiabatic quantum search algorithm. We found that when adding a transitionless quantum driving term Ht~ (t) on the local adiabatic quantum search algorithm, the success rate is 1 exactly with arbitrary evolution time by solving the time-dependent Schr6dinger equation in eigen-picture. Moreover, we show the reason for the drastic decrease of the evolution time is that the driving Hamiltonian increases the lowest eigenvalues to a maximum of展开更多
We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field, which is connected to two leads, and we give the response of the transport current to the dynamical localiza...We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field, which is connected to two leads, and we give the response of the transport current to the dynamical localization. We found that when the ratio of the magnetic flux to the total quantum dots number is a root of the zeroth order Bessel function, dynamical localization and collapse of quasi-energy occurs and importantly~ the transport current displays a dip which is the signal of dynamical localization. The dynamical localization effect is strengthened as a result of the increase of the quantum dot number, and it is weakened on account of the increase of the dots-lead hopping rate.展开更多
The possibility that quantum mechanics is founded on non-metric space has been previously introduced as an alternative consequence of Bell inequalities violation. This work develops the concept further by an analysis ...The possibility that quantum mechanics is founded on non-metric space has been previously introduced as an alternative consequence of Bell inequalities violation. This work develops the concept further by an analysis of the iconic Heisenberg gedanken experiment. No lower bound is found in the gedanken uncertainly relation for a non-metric spatial background. This result has the fundamental consequence that the quantum particle trajectory is retained in non-metric space and time. Assignment of measurement number-values to unmeasured incompatible variables is found to be mathematically incorrect. The current disagreement between different formulations of the empirically verified error-disturbance relations can be explained as a consequence of the structure of space. Quantum contextuality can likewise be explained geometrically. An alternative analysis of the extendedEPRperfect anti-correlation configuration is given. The consensus that local causality is the sole assumption is found to be incorrect. There is also the additional assumption of orientation independence. Inequalities violation does not therefore mandate rejection of local causality. Violation of the assumption of orientation independence implies rejection of metric, non-contextual variables algebraically representing physical quantities.展开更多
We study the equivalence of tripartite mixed states under local unitary transformations. The nonlocal properties for a class of tripartite quantum states in C^K× CM ^M×C^N composite systems are investigated ...We study the equivalence of tripartite mixed states under local unitary transformations. The nonlocal properties for a class of tripartite quantum states in C^K× CM ^M×C^N composite systems are investigated and a complete set of invariants under local unitary transformations for these states is presented. It is shown that two of these states are locally equivalent if and only if all these invariants have the same values.展开更多
The Schroedinger equation involving the phenomenon of the localization and entanglement for an exciton in a quantum dot molecule by an ac electric field is analytically investigated. New exact series solutions for the...The Schroedinger equation involving the phenomenon of the localization and entanglement for an exciton in a quantum dot molecule by an ac electric field is analytically investigated. New exact series solutions for the Schroedinger equation have been obtained for the first time. The analytical expressions can further describe the dynamical behaviors of an interacting electron-hole pair in a double coupled quantum dot molecule under an ac electric field accurately.展开更多
A much simpler and self-consistent derivation of the non-linear component Gu×Gv of the quantum chromodynamic SU(3) field tensor is given which does not require the postulate of color confinement to complete the d...A much simpler and self-consistent derivation of the non-linear component Gu×Gv of the quantum chromodynamic SU(3) field tensor is given which does not require the postulate of color confinement to complete the derivation and which mirrors SU(2)’s formal development.展开更多
Continuous-variable quantum key distribution (CVQKD) with the local local oscillator (LLO) is confronted with new security problems due to the reference pulses transmitted together with quantum signals over the insecu...Continuous-variable quantum key distribution (CVQKD) with the local local oscillator (LLO) is confronted with new security problems due to the reference pulses transmitted together with quantum signals over the insecure quantum channel. In this paper, we propose a method of phase attack on reference pulses of the LLO-CVQKD with time-multiplexing. Under this phase attack, the phase drifts of reference pulses are manipulated by eavesdroppers, and then the phase compensation error is increased. Consequently, the secret key rate is reduced due to the imperfect phase compensation for quantum signals. Based on the noise model of imperfect phase compensation, the practical security of LLO-CVQKD under phase attack is analyzed. The simulation results show that the practical security is reduced due to the phase attack, yet it is still tight when system parameters are estimated by training signals.展开更多
Artificial intelligence(AI)techniques have received significant attention among research communities in the field of networking,image processing,natural language processing,robotics,etc.At the same time,a major proble...Artificial intelligence(AI)techniques have received significant attention among research communities in the field of networking,image processing,natural language processing,robotics,etc.At the same time,a major problem in wireless sensor networks(WSN)is node localization,which aims to identify the exact position of the sensor nodes(SN)using the known position of several anchor nodes.WSN comprises a massive number of SNs and records the position of the nodes,which becomes a tedious process.Besides,the SNs might be subjected to node mobility and the position alters with time.So,a precise node localization(NL)manner is required for determining the location of the SNs.In this view,this paper presents a new quantum bird migration optimizer-based NL(QBMA-NL)technique for WSN.The goal of the QBMA-NL approach is for determining the position of unknown nodes in the network by the use of anchor nodes.The QBMA-NL technique is mainly based on the mating behavior of bird species at the time of mating season.In addition,an objective function is derived based on the received signal strength indicator(RSSI)and Euclidean distance from the known to unknown SNs.For demonstrating the improved performance of the QBMA-NL technique,a wide range of simulations take place and the results reported the supreme performance over the recent NL techniques.展开更多
基金National Natural Science Foundation of China(No.11874067)。
文摘We reported a low-cost and easy-to-make method to effectively generate quantum dot(QD)states in 2D hBN films for quantum emissions at room temperature by utilizing silica nanospheres,in comparison with the sophisticated nanofabrication method reported in previous studies.The QDs created in 2D hBN films using silica nanospheres exhibit pronounced photon emissions with a good photo-stability in air,a narrow distribution of the emission peaks within the range of 580-620 nm,and a directional emission pattern,behaving as a single electric dipole.Our work develops the method of controllable fabrication of quantum emitters in 2D materials by using nano materials and structures.
基金supported by the National Natural Science Foundation of China (51075068)the Southeast University Science Foundation Funded Program (KJ2009348)
文摘Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.
基金The project supported by the Natural Science Foundation of Hunan Province of China under Grant No. 03JJY6008
文摘In the classical lattice theory, solitons and localized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist or not in the one-dimensional lattice chains is an interesting problem. By using the number state method and the Hartree approximation combined with the method of multiple scales, we investigate quantum solirons and localized modes in a one-dimensional lattice chain with the nonlinear substrate potential. It is shown that quantum solitons do exist in this nonlinear lattice chain, and at the boundary of the phonon Brillouin zone, quantum solitons become quantum localized modes, phonons are pinned to the lattice of the vicinity at the central position j = j0.
基金Supported by the National Natural Science Foundation of China under Grant No 61378011the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doubled when compared with the prepare-and-measure QKD. An interesting question is whether the transmission distance can be extended further. In this work, we consider the contributions of the two-way local operations and classical communications to the key generation rate and transmission distance of the MDI-QKD. Our numerical results show that the secure transmission distances are increased by about 12kin and 8 km when the 1 13 and the 2 B steps are implemented, respectively.
基金supported by the Ministry of Science and Technology of Taiwan,China(Grant Nos.NSC-99-2112-M-032-002-MY3 and NSC 102-2112-M-032-003-MY3)the National Center for Theoretical Sciences(North)(NCTS-n)of China
文摘We present a numerical study of a model of quantum walk in a periodic potential on a line. We take the simple view that different potentials have different affects on the way in which the coin state of the walker is changed. For simplicity and definiteness, we assume that the walker's coin state is unaffected at sites without the potential, and rotated in an unbiased way according to the Hadamard matrix at sites with the potential. This is the simplest and most natural model of a quantum walk in a periodic potential with two coins. Six generic cases of such quantum walks are studied numerically. It is found that, of the six cases, four cases display significant localization effect where the walker is confined in the neighborhood of the origin for a sufficiently long time. Associated with such a localization effect is the recurrence of the probability of the walker returning to the neighborhood of the origin.
基金Project supported in part by the National Natural Science Foundations of China (Grant No 10274007), and a grant of the China Academy of Engineering and Physics.
文摘The effect of external noise, which is characterized by an Ornstein-Uhlenbeck process, on the dynamical localization of two coupling electrons in a quantum dot array under the action of an ac electric field is studied. A numerical solution of the stochastic equations is obtained by averaging over stochastic trajectories. The results show that the external noise may destroy the dynamical localization, but the anti-noise capacity of the system is stronger when the two electrons are localized at the ends of the quantum dot array.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174370)
文摘We analyze the localization of quantum walks on a one-dimensional finite graph using vector-distance. We first vectorize the probability distribution of a quantum walker in each node. Then we compute out the probability distribution vectors of quantum walks in infinite and finite graphs in the presence of static disorder respectively, and get the distance between these two vectors. We find that when the steps taken are small and the boundary condition is tight, the localization between the infinite and finite cases is greatly different. However, the difference is negligible when the steps taken are large or the boundary condition is loose. It means quantum walks on a one-dimensional finite graph may also suffer from localization in the presence of static disorder. Our approach and results can be generalized to analyze the localization of quantum walks in higher-dimensional cases.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574163 and 10675174)
文摘A flattened elliptic ring containing an electron is studied. The emphasis is placed on clarifying the effect of the flattening. The localized states are classified into four types according to their inherent nodes. When the ring becomes more flattened, the total probability of dipole absorption of each state is found to be reduced. Furthermore, each spectral line of absorption is found to shift towards red and may split into a few lines, and these lines as a whole become more diffusive.
基金supported by the National Natural Science Foundation of China(Grant Nos.61379153,61401519,and 61572529)the Natural Science Foundation of Hunan Province,China(Grant No.2017JJ3415)+1 种基金the Science and Technology Project of Guangxi Zhuang Autonomous Region,China(Grant Nos.AC16380094and 1598008-29)the Natural Science Fund of Guangxi Zhuang Autonomous Region,China(Grant No.2015GXNSFAA139298)
文摘A modified continuous-variable quantum key distribution (CVQKD) protocol is proposed by originating the entangled source from a malicious third party Eve in the middle instead of generating it from the trustworthy Alice or Bob. This method is able to enhance the efficiency of the CVQKD scheme attacked by local oscillator (LO) intensity attack in terms of the generated secret key rate in quantum communication. The other indication of the improvement is that the maximum transmission distance and the maximum loss tolerance can be increased significantly, especially for CVQKD schemes based on homodyne detection.
基金Project supported by the National Natural Science Foundation of China(Grant No.61173050)
文摘Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original "global" one, this "new" algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M = 1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,61574134,61474142,61474110,61377020,and 61376089)+1 种基金Science Challenge Project,China(Grant No.JCKY2016212A503)One Hundred Person Project of the Chinese Academy of Sciences
文摘Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.
基金Project supported by the National Natural Science Foundation of China(Grant No.11204016)
文摘We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupation probability shows that both the intra-and inter-dot Coulomb interaction can increase the localization of electrons even when the AC field is not very large. The mechanical oscillation of the quantum dot shuttles may keep the localization of electrons at a high level within a range if its frequency is quite a bit smaller than the AC field. However, the localization may be depressed if the frequency of the mechanical oscillation is the integer times of the frequency of the AC field. We also derive the analytical condition of two-electron localization both for triple quantum dots and quantum dot shuttles within the Floquet formalism.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grant Nos.11504430 and 61502526)
文摘We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level system, we derive the transi- tionless driving Hamiltonian for the local adiabatic quantum search algorithm. We found that when adding a transitionless quantum driving term Ht~ (t) on the local adiabatic quantum search algorithm, the success rate is 1 exactly with arbitrary evolution time by solving the time-dependent Schr6dinger equation in eigen-picture. Moreover, we show the reason for the drastic decrease of the evolution time is that the driving Hamiltonian increases the lowest eigenvalues to a maximum of
文摘We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field, which is connected to two leads, and we give the response of the transport current to the dynamical localization. We found that when the ratio of the magnetic flux to the total quantum dots number is a root of the zeroth order Bessel function, dynamical localization and collapse of quasi-energy occurs and importantly~ the transport current displays a dip which is the signal of dynamical localization. The dynamical localization effect is strengthened as a result of the increase of the quantum dot number, and it is weakened on account of the increase of the dots-lead hopping rate.
文摘The possibility that quantum mechanics is founded on non-metric space has been previously introduced as an alternative consequence of Bell inequalities violation. This work develops the concept further by an analysis of the iconic Heisenberg gedanken experiment. No lower bound is found in the gedanken uncertainly relation for a non-metric spatial background. This result has the fundamental consequence that the quantum particle trajectory is retained in non-metric space and time. Assignment of measurement number-values to unmeasured incompatible variables is found to be mathematically incorrect. The current disagreement between different formulations of the empirically verified error-disturbance relations can be explained as a consequence of the structure of space. Quantum contextuality can likewise be explained geometrically. An alternative analysis of the extendedEPRperfect anti-correlation configuration is given. The consensus that local causality is the sole assumption is found to be incorrect. There is also the additional assumption of orientation independence. Inequalities violation does not therefore mandate rejection of local causality. Violation of the assumption of orientation independence implies rejection of metric, non-contextual variables algebraically representing physical quantities.
基金The project supported by National Natural Science Foundation of China under Grant No. 10375038, the Fund of Beijing MEC under Grant No. KM200510028021 and NSF of Beijing under Grant No. 1042004
文摘We study the equivalence of tripartite mixed states under local unitary transformations. The nonlocal properties for a class of tripartite quantum states in C^K× CM ^M×C^N composite systems are investigated and a complete set of invariants under local unitary transformations for these states is presented. It is shown that two of these states are locally equivalent if and only if all these invariants have the same values.
基金The project partially supported by National Natural Science Foundation of China under Grant No.10247008 and the Science Foundation of Northwest Normal University of China under Grant No. NWNU-KJCXGC-02-04
文摘The Schroedinger equation involving the phenomenon of the localization and entanglement for an exciton in a quantum dot molecule by an ac electric field is analytically investigated. New exact series solutions for the Schroedinger equation have been obtained for the first time. The analytical expressions can further describe the dynamical behaviors of an interacting electron-hole pair in a double coupled quantum dot molecule under an ac electric field accurately.
文摘A much simpler and self-consistent derivation of the non-linear component Gu×Gv of the quantum chromodynamic SU(3) field tensor is given which does not require the postulate of color confinement to complete the derivation and which mirrors SU(2)’s formal development.
文摘Continuous-variable quantum key distribution (CVQKD) with the local local oscillator (LLO) is confronted with new security problems due to the reference pulses transmitted together with quantum signals over the insecure quantum channel. In this paper, we propose a method of phase attack on reference pulses of the LLO-CVQKD with time-multiplexing. Under this phase attack, the phase drifts of reference pulses are manipulated by eavesdroppers, and then the phase compensation error is increased. Consequently, the secret key rate is reduced due to the imperfect phase compensation for quantum signals. Based on the noise model of imperfect phase compensation, the practical security of LLO-CVQKD under phase attack is analyzed. The simulation results show that the practical security is reduced due to the phase attack, yet it is still tight when system parameters are estimated by training signals.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 1/279/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R114)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Artificial intelligence(AI)techniques have received significant attention among research communities in the field of networking,image processing,natural language processing,robotics,etc.At the same time,a major problem in wireless sensor networks(WSN)is node localization,which aims to identify the exact position of the sensor nodes(SN)using the known position of several anchor nodes.WSN comprises a massive number of SNs and records the position of the nodes,which becomes a tedious process.Besides,the SNs might be subjected to node mobility and the position alters with time.So,a precise node localization(NL)manner is required for determining the location of the SNs.In this view,this paper presents a new quantum bird migration optimizer-based NL(QBMA-NL)technique for WSN.The goal of the QBMA-NL approach is for determining the position of unknown nodes in the network by the use of anchor nodes.The QBMA-NL technique is mainly based on the mating behavior of bird species at the time of mating season.In addition,an objective function is derived based on the received signal strength indicator(RSSI)and Euclidean distance from the known to unknown SNs.For demonstrating the improved performance of the QBMA-NL technique,a wide range of simulations take place and the results reported the supreme performance over the recent NL techniques.