We construct a one-dimensional quasiperiodic quantum walk to investigate the localization–delocalization transition.The inverse participation ratio and Lyapunov exponent are employed as two indexes to determine the m...We construct a one-dimensional quasiperiodic quantum walk to investigate the localization–delocalization transition.The inverse participation ratio and Lyapunov exponent are employed as two indexes to determine the mobility edge, a critical energy to distinguish the energy regions of extended and localized states. The analytical solution of mobility edge is obtained by the Lyapunov exponents in global theory, and the consistency of the two indexes is confirmed. We further study the dynamic characteristics of the quantum walk and show that the probabilities are localized to some specific lattice sites with time evolution. This phenomenon is explained by the effective potential of the Hamiltonian which corresponds to the phase in the coin operator of the quantum walk.展开更多
The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed.An example of a control object as a mobile robot with redundant robotic manipulator and ster...The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed.An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced.Design of robust knowledge bases is performed using a developed computational intelligence-quantum/soft computing toolkit(QC/SCOptKBTM).The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described.The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described.The general design methodology of a generalizing control unit based on the physical laws of quantum computing(quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal)is considered.The modernization of the pattern recognition system based on stereo vision technology presented.The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system.The main objective of this article is to demonstrate the advantages of the approach based on quantum/soft computing.展开更多
In this work, the capillary electrophoresis mobility shift assay (CEMSA) was first adopted to study the interaction of protein with quantum dots (QDs). In this study, bovine serum albumin (BSA) and CdTe QDs were...In this work, the capillary electrophoresis mobility shift assay (CEMSA) was first adopted to study the interaction of protein with quantum dots (QDs). In this study, bovine serum albumin (BSA) and CdTe QDs were used as model samples. We observed that BSA was facilely adsorbed to CdTe QDs surface, and the QD-BSA complex was formed by a 1:1 stoichiometric ratio. A value of 2.17 4-0.27 × 10^6 mol^-1 L^-1 (at 25 ℃) for the association constant was obtained by CEMSA.展开更多
The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility ...The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.展开更多
By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for Al...By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for AlAs/GaAs semiconductor quantum wells (QWs) under hydrostatic pressure. The scattering from confined phonon modes, interface phonon modes and half-space phonon modes are analysed and the dominant scattering mechanisms in wide and narrow QWs are presented. The temperature dependence of the electronic mobility is also studied in the temperature range of optical phonon scattering being available. It is shown that the electronic mobility reduces obviously as pressure increases from 0 to 4GPa, the confined longitudinal optical (LO) phonon modes play an important role in wide QWs, whereas the interface optical phonon modes are dominant in narrow QWs, the half-space LO phonon modes hardly influence the electronic mobility expect for very narrow QWs.展开更多
The electron mobility limited by the interface and surface roughness scatterings of the two-dimensional electron gas in AlxGa1-xN/GaN quantum wells is studied. The newly proposed surface roughness scattering in the Al...The electron mobility limited by the interface and surface roughness scatterings of the two-dimensional electron gas in AlxGa1-xN/GaN quantum wells is studied. The newly proposed surface roughness scattering in the AlGaN/GaN quantum wells becomes effective when an electric field exists in the AlxGa1-xN barrier. For the AlGaN/GaN potential well, the ground subband energy is governed by the spontaneous and the piezoelectric polarization fields which are determined by the barrier and the well thicknesses. The thickness fluctuation of the AlGaN barrier and the GaN well due to the roughnesses cause the local fluctuation of the ground subband energy, which will reduce the 2DEG mobility.展开更多
The mobility limited by cluster scattering in ternary alloy semiconductor quantum wire (QWR) is theoretically inves- tigated under Born approximation. We calculate the screened mobility due to clusters (high indium...The mobility limited by cluster scattering in ternary alloy semiconductor quantum wire (QWR) is theoretically inves- tigated under Born approximation. We calculate the screened mobility due to clusters (high indium composition lnGaN) scattering in the InxGal_xN QWR structure. The characteristics of the cluster scattering mechanism are discussed in terms of the indium composition of clusters, the one-dimensional electron gas (1DEG) concentration, and the radius of QWR. We find that the density, breadth of cluster, and the correlation length have a strong effect on the electron mobility due to cluster scattering, Finally, a comparison of the cluster scattering is made with the alloy-disorder scattering. It is found that the cluster scattering acts as a significant scattering event to impact the resultant electron mobility in ternary alloy QWR.展开更多
We present a comprehensive numerical framework for the electrical and optical modeling and simulation of hybrid quantum dot light-emitting diodes(QD-LEDs).We propose a model known as hopping mobility to calculate the ...We present a comprehensive numerical framework for the electrical and optical modeling and simulation of hybrid quantum dot light-emitting diodes(QD-LEDs).We propose a model known as hopping mobility to calculate the carrier mobility in the emissive organic layer doped with quantum dots(QDs).To evaluate the ability of this model to describe the electrical characteristics of QD-LEDs,the measured data of a fabricated QD-LED with different concentrations of QDs in the emissive layer were taken,and the corresponding calculations were performed based on the proposed model.The simulation results indicate that the hopping mobility model can describe the concentration dependence of the electrical behavior of the device.Then,based on the continuity equation for singlet and triplet excitons,the exciton density profiles of the devices with different QD concentrations were extracted.Subsequently,the corresponding luminance characteristics of the devices were calculated,where the results are in good agreement with the experimental data.展开更多
Mobile Edge Computing(MEC)provides communication and computational capabilities for the industrial Internet,meeting the demands of latency-sensitive tasks.Nevertheless,traditional model-driven task offloading strategi...Mobile Edge Computing(MEC)provides communication and computational capabilities for the industrial Internet,meeting the demands of latency-sensitive tasks.Nevertheless,traditional model-driven task offloading strategies face challenges in adapting to situations with unknown network communication status and computational capabilities.This limitation becomes notably significant in complex industrial networks of high-speed railway.Motivated by these considerations,a data and model-driven task offloading problem is proposed in this paper.A redundant communication network is designed to adapt to anomalous channel states when tasks are offloaded to edge servers.The link switching mechanism is executed by the train according to the attributes of the completed task.The task offloading optimization problem is formulated by introducing data-driven prediction of communication states into the traditional model.Furthermore,the optimal strategy is achieved by employing the informer-based prediction algorithm and the quantum particle swarm optimization method,which effectively tackle real-time optimization problems due to their low time complexity.The simulations illustrate that the data and model-driven task offloading strategy can predict the communication state in advance,thus reducing the cost of the system and improving its robustness.展开更多
As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales into the nanometer regime, quantum mechanical effects are becoming more and more significant. In this work, a model for th...As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales into the nanometer regime, quantum mechanical effects are becoming more and more significant. In this work, a model for the surrounding-gate (SG) nMOSFET is developed. The SchrSdinger equation is solved analytically. Some of the solutions are verified via results obtained from simulations. It is found that the percentage of the electrons with lighter conductivity mass increases as the silicon body radius decreases, or as the gate voltage reduces, or as the temperature decreases. The eentroid of inversion-layer is driven away from the silicon-oxide interface towards the silicon body, therefore the carriers will suffer less scattering from the interface and the electrons effective mobility of the SG nMOSFETs will be enhanced.展开更多
A complete quantum mechanical model for GaAs/AlGaAs quantum well infrared photodetectors(QWIPs) was presented. The photocurrent was investigated by the optical transition(absorption coefficient)between the ground stat...A complete quantum mechanical model for GaAs/AlGaAs quantum well infrared photodetectors(QWIPs) was presented. The photocurrent was investigated by the optical transition(absorption coefficient)between the ground state and the excited states due to the nonzero component of the radiation field along the sample growth direction. By studying the inter diffusion of the Al atoms across the GaAs/AlGaAs heterointer faces, the mobility of the drift diffusion carriers in the excited states was calculated. As a result, the measurement results of the dark current and the photocurrent spectra are explained theoretically.展开更多
Modulation-doped AlGaAs/GaAs structures were grown on GaAs(100) substrate by solid source molecular beam epitaxy(SSMBE) system. The factors which influence the electron mobility were investigated. After growing InP ba...Modulation-doped AlGaAs/GaAs structures were grown on GaAs(100) substrate by solid source molecular beam epitaxy(SSMBE) system. The factors which influence the electron mobility were investigated. After growing InP based materials, growth conditions were deteriorated, but by an appropriate method and using reasonable process high electron mobility(77 K) of more than 1.50×10~5 cm^2/(V·s) can still be obtained. The structures and growth conditions have been studied and optimized via Hall measurements. For a typical sample, 2.0 K electron mobility as high as 1.78×10~6 cm^2/(V·s) is achieved, and the quantum Hall oscillation phenomena can be observed.展开更多
文摘We construct a one-dimensional quasiperiodic quantum walk to investigate the localization–delocalization transition.The inverse participation ratio and Lyapunov exponent are employed as two indexes to determine the mobility edge, a critical energy to distinguish the energy regions of extended and localized states. The analytical solution of mobility edge is obtained by the Lyapunov exponents in global theory, and the consistency of the two indexes is confirmed. We further study the dynamic characteristics of the quantum walk and show that the probabilities are localized to some specific lattice sites with time evolution. This phenomenon is explained by the effective potential of the Hamiltonian which corresponds to the phase in the coin operator of the quantum walk.
文摘The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed.An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced.Design of robust knowledge bases is performed using a developed computational intelligence-quantum/soft computing toolkit(QC/SCOptKBTM).The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described.The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described.The general design methodology of a generalizing control unit based on the physical laws of quantum computing(quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal)is considered.The modernization of the pattern recognition system based on stereo vision technology presented.The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system.The main objective of this article is to demonstrate the advantages of the approach based on quantum/soft computing.
基金This work was financially supported by the National Natural Science Foundation of China (No.20675052, 20727005);National High-Tech R&D Program (No.2006AA03Z324).
文摘In this work, the capillary electrophoresis mobility shift assay (CEMSA) was first adopted to study the interaction of protein with quantum dots (QDs). In this study, bovine serum albumin (BSA) and CdTe QDs were used as model samples. We observed that BSA was facilely adsorbed to CdTe QDs surface, and the QD-BSA complex was formed by a 1:1 stoichiometric ratio. A value of 2.17 4-0.27 × 10^6 mol^-1 L^-1 (at 25 ℃) for the association constant was obtained by CEMSA.
基金supported by the National Natural Science Foundation of China (No. 61741102, No. 61471164)China Scholarship Council
文摘The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.
基金Project supported by the National Natural Science Foundation of China (Grant No 60566002) and the project for excellence subject-directors of Inner Mongolia Autonomous Region of China.
文摘By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for AlAs/GaAs semiconductor quantum wells (QWs) under hydrostatic pressure. The scattering from confined phonon modes, interface phonon modes and half-space phonon modes are analysed and the dominant scattering mechanisms in wide and narrow QWs are presented. The temperature dependence of the electronic mobility is also studied in the temperature range of optical phonon scattering being available. It is shown that the electronic mobility reduces obviously as pressure increases from 0 to 4GPa, the confined longitudinal optical (LO) phonon modes play an important role in wide QWs, whereas the interface optical phonon modes are dominant in narrow QWs, the half-space LO phonon modes hardly influence the electronic mobility expect for very narrow QWs.
基金the National Natural Science Foundation of China(Grant Nos.91233111,11275228,60976008,61006004,61076001,and 10979507)the National Basic Research Program of China(Grant No.2012CB619305)the National High Technology Research and Development Program of China(Grant No.2011AA03A101)
文摘The electron mobility limited by the interface and surface roughness scatterings of the two-dimensional electron gas in AlxGa1-xN/GaN quantum wells is studied. The newly proposed surface roughness scattering in the AlGaN/GaN quantum wells becomes effective when an electric field exists in the AlxGa1-xN barrier. For the AlGaN/GaN potential well, the ground subband energy is governed by the spontaneous and the piezoelectric polarization fields which are determined by the barrier and the well thicknesses. The thickness fluctuation of the AlGaN barrier and the GaN well due to the roughnesses cause the local fluctuation of the ground subband energy, which will reduce the 2DEG mobility.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91233111,61274041,11275228,61006004,and 61076001)the National Basic Research Program of China(Grant No.2012CB619305)the High Technology R&D Program of China(Grant No.2011AA03A101)
文摘The mobility limited by cluster scattering in ternary alloy semiconductor quantum wire (QWR) is theoretically inves- tigated under Born approximation. We calculate the screened mobility due to clusters (high indium composition lnGaN) scattering in the InxGal_xN QWR structure. The characteristics of the cluster scattering mechanism are discussed in terms of the indium composition of clusters, the one-dimensional electron gas (1DEG) concentration, and the radius of QWR. We find that the density, breadth of cluster, and the correlation length have a strong effect on the electron mobility due to cluster scattering, Finally, a comparison of the cluster scattering is made with the alloy-disorder scattering. It is found that the cluster scattering acts as a significant scattering event to impact the resultant electron mobility in ternary alloy QWR.
文摘We present a comprehensive numerical framework for the electrical and optical modeling and simulation of hybrid quantum dot light-emitting diodes(QD-LEDs).We propose a model known as hopping mobility to calculate the carrier mobility in the emissive organic layer doped with quantum dots(QDs).To evaluate the ability of this model to describe the electrical characteristics of QD-LEDs,the measured data of a fabricated QD-LED with different concentrations of QDs in the emissive layer were taken,and the corresponding calculations were performed based on the proposed model.The simulation results indicate that the hopping mobility model can describe the concentration dependence of the electrical behavior of the device.Then,based on the continuity equation for singlet and triplet excitons,the exciton density profiles of the devices with different QD concentrations were extracted.Subsequently,the corresponding luminance characteristics of the devices were calculated,where the results are in good agreement with the experimental data.
基金supported by National Natural Science Foundation of China under Grant Nos.62327806,61925302,and 62273027。
文摘Mobile Edge Computing(MEC)provides communication and computational capabilities for the industrial Internet,meeting the demands of latency-sensitive tasks.Nevertheless,traditional model-driven task offloading strategies face challenges in adapting to situations with unknown network communication status and computational capabilities.This limitation becomes notably significant in complex industrial networks of high-speed railway.Motivated by these considerations,a data and model-driven task offloading problem is proposed in this paper.A redundant communication network is designed to adapt to anomalous channel states when tasks are offloaded to edge servers.The link switching mechanism is executed by the train according to the attributes of the completed task.The task offloading optimization problem is formulated by introducing data-driven prediction of communication states into the traditional model.Furthermore,the optimal strategy is achieved by employing the informer-based prediction algorithm and the quantum particle swarm optimization method,which effectively tackle real-time optimization problems due to their low time complexity.The simulations illustrate that the data and model-driven task offloading strategy can predict the communication state in advance,thus reducing the cost of the system and improving its robustness.
基金Support of Shanghai Science Foundation under Grant No.09ZR1402900 the National Science Foundation of China under Grant No.60676020 Supported in part by the Special Funds for Major State Basic Research (973 Project) under Grant No.2006CB302703
文摘As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales into the nanometer regime, quantum mechanical effects are becoming more and more significant. In this work, a model for the surrounding-gate (SG) nMOSFET is developed. The SchrSdinger equation is solved analytically. Some of the solutions are verified via results obtained from simulations. It is found that the percentage of the electrons with lighter conductivity mass increases as the silicon body radius decreases, or as the gate voltage reduces, or as the temperature decreases. The eentroid of inversion-layer is driven away from the silicon-oxide interface towards the silicon body, therefore the carriers will suffer less scattering from the interface and the electrons effective mobility of the SG nMOSFETs will be enhanced.
文摘A complete quantum mechanical model for GaAs/AlGaAs quantum well infrared photodetectors(QWIPs) was presented. The photocurrent was investigated by the optical transition(absorption coefficient)between the ground state and the excited states due to the nonzero component of the radiation field along the sample growth direction. By studying the inter diffusion of the Al atoms across the GaAs/AlGaAs heterointer faces, the mobility of the drift diffusion carriers in the excited states was calculated. As a result, the measurement results of the dark current and the photocurrent spectra are explained theoretically.
文摘Modulation-doped AlGaAs/GaAs structures were grown on GaAs(100) substrate by solid source molecular beam epitaxy(SSMBE) system. The factors which influence the electron mobility were investigated. After growing InP based materials, growth conditions were deteriorated, but by an appropriate method and using reasonable process high electron mobility(77 K) of more than 1.50×10~5 cm^2/(V·s) can still be obtained. The structures and growth conditions have been studied and optimized via Hall measurements. For a typical sample, 2.0 K electron mobility as high as 1.78×10~6 cm^2/(V·s) is achieved, and the quantum Hall oscillation phenomena can be observed.