期刊文献+
共找到477篇文章
< 1 2 24 >
每页显示 20 50 100
Design of a novel hybrid quantum deep neural network in INEQR images classification
1
作者 王爽 王柯涵 +3 位作者 程涛 赵润盛 马鸿洋 郭帅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期230-238,共9页
We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantu... We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network. 展开更多
关键词 quantum computing image classification quantum–classical hybrid neural network quantum image representation INTERPOLATION
下载PDF
Analysis of learnability of a novel hybrid quantum-classical convolutional neural network in image classification
2
作者 程涛 赵润盛 +2 位作者 王爽 王睿 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期275-283,共9页
We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in cl... We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in classical convolutional neural networks,forming a new quantum convolutional layer to achieve unitary transformation of quantum states,enabling the model to more accurately extract hidden information from images.At the same time,we combine the classical fully connected layer with PQCs to form a new hybrid quantum-classical fully connected layer to further improve the accuracy of classification.Finally,we use the MNIST dataset to test the potential of the HQCCNN.The results indicate that the HQCCNN has good performance in solving classification problems.In binary classification tasks,the classification accuracy of numbers 5 and 7 is as high as 99.71%.In multivariate classification,the accuracy rate also reaches 98.51%.Finally,we compare the performance of the HQCCNN with other models and find that the HQCCNN has better classification performance and convergence speed. 展开更多
关键词 parameterized quantum circuits quantum machine learning hybrid quantum-classical convolutional neural network
下载PDF
Recurrent neural network decoding of rotated surface codes based on distributed strategy
3
作者 李帆 李熬庆 +1 位作者 甘启迪 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期322-330,共9页
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre... Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder. 展开更多
关键词 quantum error correction rotated surface code recurrent neural network distributed strategy
下载PDF
A backdoor attack against quantum neural networks with limited information
4
作者 黄晨猗 张仕斌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期219-228,共10页
Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs... Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods. 展开更多
关键词 backdoor attack quantum artificial intelligence security quantum neural network variational quantum circuit
下载PDF
Deep learning framework for time series classification based on multiple imaging and hybrid quantum neural networks
5
作者 谢建设 董玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期221-230,共10页
Time series classification(TSC)has attracted a lot of attention for time series data mining tasks and has been applied in various fields.With the success of deep learning(DL)in computer vision recognition,people are s... Time series classification(TSC)has attracted a lot of attention for time series data mining tasks and has been applied in various fields.With the success of deep learning(DL)in computer vision recognition,people are starting to use deep learning to tackle TSC tasks.Quantum neural networks(QNN)have recently demonstrated their superiority over traditional machine learning in methods such as image processing and natural language processing,but research using quantum neural networks to handle TSC tasks has not received enough attention.Therefore,we proposed a learning framework based on multiple imaging and hybrid QNN(MIHQNN)for TSC tasks.We investigate the possibility of converting 1D time series to 2D images and classifying the converted images using hybrid QNN.We explored the differences between MIHQNN based on single time series imaging and MIHQNN based on the fusion of multiple time series imaging.Four quantum circuits were also selected and designed to study the impact of quantum circuits on TSC tasks.We tested our method on several standard datasets and achieved significant results compared to several current TSC methods,demonstrating the effectiveness of MIHQNN.This research highlights the potential of applying quantum computing to TSC and provides the theoretical and experimental background for future research. 展开更多
关键词 quantum neural networks time series classification time-series images feature fusion
下载PDF
Quantum Computing Based Neural Networks for Anomaly Classification in Real-Time Surveillance Videos
6
作者 MD.Yasar Arafath A.Niranjil Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2489-2508,共20页
For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful i... For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful incidents such as suicide attempts.Nevertheless,Deep learning methods for classification,like convolutional neural networks,necessitate a lot of computing power.Quantum computing is a branch of technology that solves abnormal and complex problems using quantum mechanics.As a result,the focus of this research is on developing a hybrid quantum computing model which is based on deep learning.This research develops a Quantum Computing-based Convolutional Neural Network(QC-CNN)to extract features and classify anomalies from surveillance footage.A Quantum-based Circuit,such as the real amplitude circuit,is utilized to improve the performance of the model.As far as my research,this is the first work to employ quantum deep learning techniques to classify anomalous events in video surveillance applications.There are 13 anomalies classified from the UCF-crime dataset.Based on experimental results,the proposed model is capable of efficiently classifying data concerning confusion matrix,Receiver Operating Characteristic(ROC),accuracy,Area Under Curve(AUC),precision,recall as well as F1-score.The proposed QC-CNN has attained the best accuracy of 95.65 percent which is 5.37%greater when compared to other existing models.To measure the efficiency of the proposed work,QC-CNN is also evaluated with classical and quantum models. 展开更多
关键词 Deep learning video surveillance quantum computing anomaly detection convolutional neural network
下载PDF
Leveraging Quantum Computing for the Ising Model to Simulate Two Real Systems: Magnetic Materials and Biological Neural Networks (BNNs)
7
作者 David L. Cao Khoi Dinh 《Journal of Quantum Information Science》 2023年第3期138-155,共18页
Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hami... Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles. 展开更多
关键词 Ising Model Magnetic Material Biological neural network quantum Computting International Business Machines (IBM)
下载PDF
Role of Entanglement in Quantum Neural Networks (QNN)
8
作者 Manu P. Singh B. S. Rajput 《Journal of Modern Physics》 2015年第13期1908-1920,共13页
Starting with the theoretical basis of quantum computing, entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin cor... Starting with the theoretical basis of quantum computing, entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin correlation functions has been established and the role of entanglement in implementation of QNN has been emphasized. Necessary and sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been generated and all the qubits of two-qubit system have been obtained. Carrying out the correct computation of XOR function in neural network, it has been shown that QNN requires the proper correlation between the input and output qubits and the presence of appropriate entanglement in the system guarantees this correlation. 展开更多
关键词 ENTANGLEMENT MAXIMALLY ENTANGLED State (MES) quantum neural network (qnn) EIGEN Basis quantum Associated Memory (Qu AM)
下载PDF
Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs
9
作者 李尊朝 蒋耀林 张瑞智 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第3期438-442,共5页
For the treatment of the quantum effect of charge distribution in nanoscale MOSFETs,a quantum correction model using Levenberg-Marquardt back-propagation neural networks is presented that can predict the quantum densi... For the treatment of the quantum effect of charge distribution in nanoscale MOSFETs,a quantum correction model using Levenberg-Marquardt back-propagation neural networks is presented that can predict the quantum density from the classical density. The training speed and accuracy of neural networks with different hidden layers and numbers of neurons are studied. We conclude that high training speed and accuracy can be obtained using neural networks with two hidden layers,but the number of neurons in the hidden layers does not have a noticeable effect, For single and double-gate nanoscale MOSFETs, our model can easily predict the quantum charge density in the silicon layer,and it agrees closely with the Schrodinger-Poisson approach. 展开更多
关键词 neural network quantum correction nanoscale MOSFET charge density
下载PDF
Learning algorithm and application of quantum BP neural networks based on universal quantum gates 被引量:26
10
作者 Li Panchi Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期167-174,共8页
A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is... A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation. 展开更多
关键词 quantum computing universal quantum gate quantum neuron quantum neural networks
下载PDF
Chaotic phenomena in Josephson circuits coupled quantum cellular neural networks 被引量:4
11
作者 王森 蔡理 +1 位作者 李芹 吴刚 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第9期2631-2634,共4页
In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset o... In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators. 展开更多
关键词 quantum cellular neural network Josephson junction CHAOS Lyapunov exponent
下载PDF
Application of quantum neural networks in localization of acoustic emission 被引量:5
12
作者 Aidong Deng Li Zhao Wei Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期507-512,共6页
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca... Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more. 展开更多
关键词 acoustic emission(AE) LOCALIZATION quantum genetic algorithm(QGA) back propagation(BP) neural network.
下载PDF
Neural network analytic continuation for Monte Carlo:Improvement by statistical errors
13
作者 孙恺伟 王垡 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期156-170,共15页
This study explores the use of neural network-based analytic continuation to extract spectra from Monte Carlo data.We apply this technique to both synthetic and Monte Carlo-generated data.The training sets for neural ... This study explores the use of neural network-based analytic continuation to extract spectra from Monte Carlo data.We apply this technique to both synthetic and Monte Carlo-generated data.The training sets for neural networks are carefully synthesized without“data leakage”.We find that the training set should match the input correlation functions in terms of statistical error properties,such as noise level,noise dependence on imaginary time,and imaginary time-displaced correlations.We have developed a systematic method to synthesize such training datasets.Our improved algorithm outperforms the widely used maximum entropy method in highly noisy situations.As an example,our method successfully extracted the dynamic structure factor of the spin-1/2 Heisenberg chain from quantum Monte Carlo simulations. 展开更多
关键词 neural network analytic continuation quantum Monte Carlo
下载PDF
Backflow Transformation for A=3 Nuclei with Artificial Neural Networks
14
作者 YANG Yilong ZHAO Pengwei 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期673-678,共6页
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif... A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy. 展开更多
关键词 nuclear many-body problem quantum Monte Carlo artificial neural network backflow transformation
下载PDF
The characteristics of nonlinear chaotic dynamics in quantum cellular neural networks 被引量:1
15
作者 王森 蔡理 +2 位作者 康强 吴刚 李芹 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期2837-2843,共7页
With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Qu... With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Quantum Cellular Neural Network (QCNN), including equilibrium points, bifurcation and chaotic behaviour. Different phenomena, such as quasi-periodic, chaotic and hyper-chaotic states as well as bifurcations are revealed. The system's bifurcation and chaotic behaviour under the influence of the different coupling parameters are analysed. And it finds that the unbalanced cells coupled QCNN is easy to cause chaotic oscillation and the system response enters into chaotic state from quasi-periodic state by quasi-period bifurcation; however, the balanced cells coupled QCNN also can be chaotic when coupling parameters is in some region. Additionally, both the unbalanced and balanced cells coupled QCNNs can possess hyper-chaotic behaviour. It provides valuable information about QCNNs for future application in high-parallel signal processing and novel ultra-small chaotic generators. 展开更多
关键词 quantum cellular neural network BIFURCATION CHAOS quantum cellular automata
下载PDF
Neural Network Based on Quantum Chemistry for Predicting Melting Point of Organic Compounds 被引量:1
16
作者 Juan A. Lazzus 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第1期19-26,共8页
The melting points of organic compounds were estimated using a combined method that includes a backpropagation neural network and quantitative structure property relationship (QSPR) parameters in quantum chemistry. ... The melting points of organic compounds were estimated using a combined method that includes a backpropagation neural network and quantitative structure property relationship (QSPR) parameters in quantum chemistry. Eleven descriptors that reflect the intermolecular forces and molecular symmetry were used as input variables. QSPR parameters were calculated using molecular modeling and PM3 semi-empirical molecular orbital theories. A total of 260 compounds were used to train the network, which was developed using MatLab. Then, the melting points of 73 other compounds were predicted and results were compared to experimental data from the literature. The study shows that the chosen artificial neural network and the quantitative structure property relationships method present an excellent alternative for the estimation of the melting point of an organic compound, with average absolute deviation of 5%. 展开更多
关键词 Melting point Quantitative structure-property relationship Artificial neural network quantum chemistry
下载PDF
Approach for Training Quantum Neural Network to Predict Severity of COVID-19 in Patients 被引量:1
17
作者 Engy El-shafeiy Aboul Ella Hassanien +1 位作者 Karam M.Sallam A.A.Abohany 《Computers, Materials & Continua》 SCIE EI 2021年第2期1745-1755,共11页
Currently,COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities.In this paper,a novel approach called the COVID-19 Quantum Neural Network(CQNN)for predicting the sev... Currently,COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities.In this paper,a novel approach called the COVID-19 Quantum Neural Network(CQNN)for predicting the severity of COVID-19 in patients is proposed.It consists of two phases:In the first,the most distinct subset of features in a dataset is identified using a Quick Reduct Feature Selection(QRFS)method to improve its classification performance;and,in the second,machine learning is used to train the quantum neural network to classify the risk.It is found that patients’serial blood counts(their numbers of lymphocytes from days 1 to 15 after admission to hospital)are associated with relapse rates and evaluations of COVID-19 infections.Accordingly,the severity of COVID-19 is classified in two categories,serious and non-serious.The experimental results indicate that the proposed CQNN’s prediction approach outperforms those of other classification algorithms and its high accuracy confirms its effectiveness. 展开更多
关键词 Predict COVID-19 lymphocytic count quantum neural network dynamic change
下载PDF
Quantum Particle Swarm Optimization Based Convolutional Neural Network for Handwritten Script Recognition 被引量:1
18
作者 Reya Sharma Baijnath Kaushik +2 位作者 Naveen Kumar Gondhi Muhammad Tahir Mohammad Khalid Imam Rahmani 《Computers, Materials & Continua》 SCIE EI 2022年第6期5855-5873,共19页
Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse ap... Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse application potentials.Nowadays,different methods are available for automatic script recognition.Among most of the reported script recognition techniques,deep neural networks have achieved impressive results and outperformed the classical machine learning algorithms.However,the process of designing such networks right from scratch intuitively appears to incur a significant amount of trial and error,which renders them unfeasible.This approach often requires manual intervention with domain expertise which consumes substantial time and computational resources.To alleviate this shortcoming,this paper proposes a new neural architecture search approach based on meta-heuristic quantum particle swarm optimization(QPSO),which is capable of automatically evolving the meaningful convolutional neural network(CNN)topologies.The computational experiments have been conducted on eight different datasets belonging to three popular Indic scripts,namely Bangla,Devanagari,and Dogri,consisting of handwritten characters and digits.Empirically,the results imply that the proposed QPSO-CNN algorithm outperforms the classical and state-of-the-art methods with faster prediction and higher accuracy. 展开更多
关键词 Neuro-evolution quantum particle swarm optimization deep learning convolutional neural networks handwriting recognition
下载PDF
Determination of quantum toric error correction code threshold using convolutional neural network decoders 被引量:1
19
作者 Hao-Wen Wang Yun-Jia Xue +2 位作者 Yu-Lin Ma Nan Hua Hong-Yang Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期136-142,共7页
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err... Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise. 展开更多
关键词 quantum error correction toric code convolutional neural network(CNN)decoder
下载PDF
Quantum-Inspired Neural Networks with Application 被引量:1
20
作者 Jianping Li 《Open Journal of Applied Sciences》 2015年第6期233-239,共7页
In this paper, a novel neural network is proposed based on quantum rotation gate and controlled- NOT gate. Both the input layer and the hide layer are quantum-inspired neurons. The input is given by qubits, and the ou... In this paper, a novel neural network is proposed based on quantum rotation gate and controlled- NOT gate. Both the input layer and the hide layer are quantum-inspired neurons. The input is given by qubits, and the output is the probability of qubit in the state . By employing the gradient descent method, a training algorithm is introduced. The experimental results show that this model is superior to the common BP networks. 展开更多
关键词 quantum COMPUTING neural networkS ALGORITHM Design
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部