With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ...With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.展开更多
Time series classification(TSC)has attracted a lot of attention for time series data mining tasks and has been applied in various fields.With the success of deep learning(DL)in computer vision recognition,people are s...Time series classification(TSC)has attracted a lot of attention for time series data mining tasks and has been applied in various fields.With the success of deep learning(DL)in computer vision recognition,people are starting to use deep learning to tackle TSC tasks.Quantum neural networks(QNN)have recently demonstrated their superiority over traditional machine learning in methods such as image processing and natural language processing,but research using quantum neural networks to handle TSC tasks has not received enough attention.Therefore,we proposed a learning framework based on multiple imaging and hybrid QNN(MIHQNN)for TSC tasks.We investigate the possibility of converting 1D time series to 2D images and classifying the converted images using hybrid QNN.We explored the differences between MIHQNN based on single time series imaging and MIHQNN based on the fusion of multiple time series imaging.Four quantum circuits were also selected and designed to study the impact of quantum circuits on TSC tasks.We tested our method on several standard datasets and achieved significant results compared to several current TSC methods,demonstrating the effectiveness of MIHQNN.This research highlights the potential of applying quantum computing to TSC and provides the theoretical and experimental background for future research.展开更多
Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs...Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods.展开更多
In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The pro...In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The proposed architecture allows networks to classify classes up to n<sup>m</sup> classes, where n represents cutoff dimension and m the number of qumodes on photonic quantum computers. The combination of cutoff dimension and probability measurement method in the CV model allows a quantum circuit to produce output vectors of size n<sup>m</sup>. They are then interpreted as one-hot encoded labels, padded with n<sup>m</sup> - 10 zeros. The total of seven different classifiers is built using 2, 3, …, 6, and 8-qumodes on photonic quantum computing simulators, based on the binary classifier architecture proposed in “Continuous variable quantum neural networks” [1]. They are composed of a classical feed-forward neural network, a quantum data encoding circuit, and a CV quantum neural network circuit. On a truncated MNIST dataset of 600 samples, a 4-qumode hybrid classifier achieves 100% training accuracy.展开更多
A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields.The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data cluste...A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields.The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data clustering and local wave decomposition based seismic attenuation characteristics,relative wave impedance features of prestack seismic data as the selected multiple attributes for one tight sandstone gas reservoir and further employ principal component analysis combined with quantum neural networks for giving the distinguishing results of the weak responses of the gas reservoir,which is hard to detect by using the conventional technologies.For the seismic data from a tight sandstone gas reservoir in the Sichuan basin,China,we found that multiattributes based quantum neural networks can effectively capture the weak seismic responses features associated with gas saturation in the gas reservoir.This study is hoped to be useful as an aid for hydrocarbon detections for the gas reservoir with the characteristics of the weak seismic responses by the complement of the multiattributes based quantum neural networks.展开更多
We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantu...We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.展开更多
A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is...A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation.展开更多
In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset o...In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators.展开更多
With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Qu...With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Quantum Cellular Neural Network (QCNN), including equilibrium points, bifurcation and chaotic behaviour. Different phenomena, such as quasi-periodic, chaotic and hyper-chaotic states as well as bifurcations are revealed. The system's bifurcation and chaotic behaviour under the influence of the different coupling parameters are analysed. And it finds that the unbalanced cells coupled QCNN is easy to cause chaotic oscillation and the system response enters into chaotic state from quasi-periodic state by quasi-period bifurcation; however, the balanced cells coupled QCNN also can be chaotic when coupling parameters is in some region. Additionally, both the unbalanced and balanced cells coupled QCNNs can possess hyper-chaotic behaviour. It provides valuable information about QCNNs for future application in high-parallel signal processing and novel ultra-small chaotic generators.展开更多
Currently,COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities.In this paper,a novel approach called the COVID-19 Quantum Neural Network(CQNN)for predicting the sev...Currently,COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities.In this paper,a novel approach called the COVID-19 Quantum Neural Network(CQNN)for predicting the severity of COVID-19 in patients is proposed.It consists of two phases:In the first,the most distinct subset of features in a dataset is identified using a Quick Reduct Feature Selection(QRFS)method to improve its classification performance;and,in the second,machine learning is used to train the quantum neural network to classify the risk.It is found that patients’serial blood counts(their numbers of lymphocytes from days 1 to 15 after admission to hospital)are associated with relapse rates and evaluations of COVID-19 infections.Accordingly,the severity of COVID-19 is classified in two categories,serious and non-serious.The experimental results indicate that the proposed CQNN’s prediction approach outperforms those of other classification algorithms and its high accuracy confirms its effectiveness.展开更多
Entanglement distribution is important in quantum communication. Since there is no information with value in this process, purification is a good choice to solve channel noise. In this paper, we simulate the purificat...Entanglement distribution is important in quantum communication. Since there is no information with value in this process, purification is a good choice to solve channel noise. In this paper, we simulate the purification circuit under true environment on Cirq, which is a noisy intermediate-scale quantum(NISQ) platform. Besides, we apply quantum neural network(QNN) to the state after purification. We find that combining purification and quantum neural network has good robustness towards quantum noise. After general purification, quantum neural network can improve fidelity significantly without consuming extra states. It also helps to obtain the advantage of entangled states with higher dimension under amplitude damping noise. Thus, the combination can bring further benefits to purification in entanglement distribution.展开更多
Quantum neural network filters for signal processing have received a lot of interest in the recent past. The implementations of these filters had a number of design parameters that led to numerical inefficiencies. At ...Quantum neural network filters for signal processing have received a lot of interest in the recent past. The implementations of these filters had a number of design parameters that led to numerical inefficiencies. At the same time the solution procedures employed were explicit in that the evolution of the time-varying functions had to be controlled. This often led to numerical instabilities. This paper outlines a procedure for improving the stability, numerical efficiency, and the accuracy of quantum neural network filters. Two examples are used to illustrate the principles employed.展开更多
In this paper,we propose a novel algorithm based on Zidan’s quantum computing model for remotely controlling the direction of a quantumcontrolledmobile robot equippedwith n-movements.The proposed algorithm is based o...In this paper,we propose a novel algorithm based on Zidan’s quantum computing model for remotely controlling the direction of a quantumcontrolledmobile robot equippedwith n-movements.The proposed algorithm is based on the measurement of concurrence value for the different movements of the robot.Consider a faraway robot that moves in the deep space(e.g.,moves toward a galaxy),and it is required to control the direction of this robot from a ground station by some person Alice.She sends an unknown qubitα|0)+β|1)via the teleportation protocol to the robot.Then,the proposed algorithm decodes the received unknown qubit into an angleθ,that determines the motion direction of the robot,based on the concurrence value.The proposed algorithm has been tested for four and eight movements.Two simulators have been tested;IBM Quantum composer and IBM’s system,The two simulators achieved the same result approximately.The motion of any part of the robot is considered,if it has a pre-existing sensor system and a locomotive system,.We can use this technique in many places like in space robots(16 directions).The results show that the proposed technique can be easily used for a huge number of movements.However,increasing the number of movements of the robot will increase the number of qubits.展开更多
Different from the concept of universal computation,the universality of a quantum neural network focuses on the ability to approximate arbitrary functions and is an important guarantee for effectiveness.However,conven...Different from the concept of universal computation,the universality of a quantum neural network focuses on the ability to approximate arbitrary functions and is an important guarantee for effectiveness.However,conventional approaches of constructing a universal quantum neural network may result in a huge quantum register that is challenging to implement due to noise on a near-term device.To address this,we propose a simple design of a duplication-free quantum neural network whose universality can be rigorously proven.Specifically,instead of using multiple duplicates of the quantum register,our method relies on a single quantum register combined with multiple activation functions to create nonlinearity and achieve universality.Accordingly,our proposal requires significantly fewer qubits with shallower circuits,and hence substantially reduces the resource overhead and the noise effect.In addition,simulations demonstrate that our universality design is able to achieve a better learning accuracy in the presence of noise,illustrating a great potential in solving larger-scale learning problems on near-term devices.展开更多
Quantum many-body problem(QMBP)has become a hot topic in high energy physics and condensed matter physics.With the exponential increasing of the dimension of the Hilbert space,it becomes a big challenge to solve the Q...Quantum many-body problem(QMBP)has become a hot topic in high energy physics and condensed matter physics.With the exponential increasing of the dimension of the Hilbert space,it becomes a big challenge to solve the QMBP even with the most powerful computers.With the rapid development of machine learning,artificial neural networks provide a powerful tool to represent or approximate quantum many-body states.In this paper,we aim to construct explicitly the neural network representations of graph states,without stochastic optimization of the network parameters.Our method shows constructively that all graph states can be represented precisely by proper neural networks originated from[Science,355,602(2017)]and formulated in[Sci.China-Phys.Mech.Astron.,63,210312(2020)].展开更多
The quantum many-body problem(QMBP) has become a hot topic in high-energy physics and condensed-matter physics. With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the...The quantum many-body problem(QMBP) has become a hot topic in high-energy physics and condensed-matter physics. With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the QMBP, even with the most powerful computers. With the rapid development of machine learning, artificial neural networks provide a powerful tool that can represent or approximate quantum many-body states. In this paper, we aim to explicitly construct the neural network representations of hypergraph states. We construct the neural network representations for any k-uniform hypergraph state and any hypergraph state,respectively, without stochastic optimization of the network parameters. Our method constructively shows that all hypergraph states can be represented precisely by the appropriate neural networks introduced in [Science 355(2017) 602] and formulated in [Sci. China-Phys.Mech. Astron. 63(2020) 210312].展开更多
Machine learning is currently the most active interdisciplinary field having numerous applications; additionally, machine-learning techniques are used to research quantum many-body problems. In this study, we first pr...Machine learning is currently the most active interdisciplinary field having numerous applications; additionally, machine-learning techniques are used to research quantum many-body problems. In this study, we first propose neural network quantum states(NNQSs) with general input observables and explore a few related properties, such as the tensor product and local unitary operation. Second, we determine the necessary and sufficient conditions for the representability of a general graph state using normalized NNQS. Finally, to quantify the approximation degree of a given pure state, we define the best approximation degree using normalized NNQSs. Furthermore, we observe that some N-qubit states can be represented by a normalized NNQS, such as separable pure states, Bell states and GHZ states.展开更多
基金supported by Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61772295 and 61572270)the PHD foundation of Chongqing Normal University (Grant No.19XLB003)Chongqing Technology Foresight and Institutional Innovation Project (Grant No.cstc2021jsyjyzysbAX0011)。
文摘Time series classification(TSC)has attracted a lot of attention for time series data mining tasks and has been applied in various fields.With the success of deep learning(DL)in computer vision recognition,people are starting to use deep learning to tackle TSC tasks.Quantum neural networks(QNN)have recently demonstrated their superiority over traditional machine learning in methods such as image processing and natural language processing,but research using quantum neural networks to handle TSC tasks has not received enough attention.Therefore,we proposed a learning framework based on multiple imaging and hybrid QNN(MIHQNN)for TSC tasks.We investigate the possibility of converting 1D time series to 2D images and classifying the converted images using hybrid QNN.We explored the differences between MIHQNN based on single time series imaging and MIHQNN based on the fusion of multiple time series imaging.Four quantum circuits were also selected and designed to study the impact of quantum circuits on TSC tasks.We tested our method on several standard datasets and achieved significant results compared to several current TSC methods,demonstrating the effectiveness of MIHQNN.This research highlights the potential of applying quantum computing to TSC and provides the theoretical and experimental background for future research.
基金supported by the National Natural Science Foundation of China(Grant No.62076042)the National Key Research and Development Plan of China,Key Project of Cyberspace Security Governance(Grant No.2022YFB3103103)the Key Research and Development Project of Sichuan Province(Grant Nos.2022YFS0571,2021YFSY0012,2021YFG0332,and 2020YFG0307)。
文摘Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods.
文摘In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The proposed architecture allows networks to classify classes up to n<sup>m</sup> classes, where n represents cutoff dimension and m the number of qumodes on photonic quantum computers. The combination of cutoff dimension and probability measurement method in the CV model allows a quantum circuit to produce output vectors of size n<sup>m</sup>. They are then interpreted as one-hot encoded labels, padded with n<sup>m</sup> - 10 zeros. The total of seven different classifiers is built using 2, 3, …, 6, and 8-qumodes on photonic quantum computing simulators, based on the binary classifier architecture proposed in “Continuous variable quantum neural networks” [1]. They are composed of a classical feed-forward neural network, a quantum data encoding circuit, and a CV quantum neural network circuit. On a truncated MNIST dataset of 600 samples, a 4-qumode hybrid classifier achieves 100% training accuracy.
基金Supported in part by the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(No.2021ZYD0030)in part by the National Natural Science Foundation of China(Nos.41804140,42074163,41974160,42030812).
文摘A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields.The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data clustering and local wave decomposition based seismic attenuation characteristics,relative wave impedance features of prestack seismic data as the selected multiple attributes for one tight sandstone gas reservoir and further employ principal component analysis combined with quantum neural networks for giving the distinguishing results of the weak responses of the gas reservoir,which is hard to detect by using the conventional technologies.For the seismic data from a tight sandstone gas reservoir in the Sichuan basin,China,we found that multiattributes based quantum neural networks can effectively capture the weak seismic responses features associated with gas saturation in the gas reservoir.This study is hoped to be useful as an aid for hydrocarbon detections for the gas reservoir with the characteristics of the weak seismic responses by the complement of the multiattributes based quantum neural networks.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.
基金the National Natural Science Foundation of China (50138010)
文摘A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation.
基金Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No 2005F20) and the Innovation Funds of the College of Science, Air Force University of Engineering, China (Grant No 2007B003).
文摘In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators.
基金supported by the Natural Science Foundation of Shaanxi Province, China (Grant No 2005F20)the Innovation Funds of the College of Science,Air Force University of Engineering (2007B003)
文摘With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Quantum Cellular Neural Network (QCNN), including equilibrium points, bifurcation and chaotic behaviour. Different phenomena, such as quasi-periodic, chaotic and hyper-chaotic states as well as bifurcations are revealed. The system's bifurcation and chaotic behaviour under the influence of the different coupling parameters are analysed. And it finds that the unbalanced cells coupled QCNN is easy to cause chaotic oscillation and the system response enters into chaotic state from quasi-periodic state by quasi-period bifurcation; however, the balanced cells coupled QCNN also can be chaotic when coupling parameters is in some region. Additionally, both the unbalanced and balanced cells coupled QCNNs can possess hyper-chaotic behaviour. It provides valuable information about QCNNs for future application in high-parallel signal processing and novel ultra-small chaotic generators.
文摘Currently,COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities.In this paper,a novel approach called the COVID-19 Quantum Neural Network(CQNN)for predicting the severity of COVID-19 in patients is proposed.It consists of two phases:In the first,the most distinct subset of features in a dataset is identified using a Quick Reduct Feature Selection(QRFS)method to improve its classification performance;and,in the second,machine learning is used to train the quantum neural network to classify the risk.It is found that patients’serial blood counts(their numbers of lymphocytes from days 1 to 15 after admission to hospital)are associated with relapse rates and evaluations of COVID-19 infections.Accordingly,the severity of COVID-19 is classified in two categories,serious and non-serious.The experimental results indicate that the proposed CQNN’s prediction approach outperforms those of other classification algorithms and its high accuracy confirms its effectiveness.
文摘Entanglement distribution is important in quantum communication. Since there is no information with value in this process, purification is a good choice to solve channel noise. In this paper, we simulate the purification circuit under true environment on Cirq, which is a noisy intermediate-scale quantum(NISQ) platform. Besides, we apply quantum neural network(QNN) to the state after purification. We find that combining purification and quantum neural network has good robustness towards quantum noise. After general purification, quantum neural network can improve fidelity significantly without consuming extra states. It also helps to obtain the advantage of entangled states with higher dimension under amplitude damping noise. Thus, the combination can bring further benefits to purification in entanglement distribution.
文摘Quantum neural network filters for signal processing have received a lot of interest in the recent past. The implementations of these filters had a number of design parameters that led to numerical inefficiencies. At the same time the solution procedures employed were explicit in that the evolution of the time-varying functions had to be controlled. This often led to numerical instabilities. This paper outlines a procedure for improving the stability, numerical efficiency, and the accuracy of quantum neural network filters. Two examples are used to illustrate the principles employed.
文摘In this paper,we propose a novel algorithm based on Zidan’s quantum computing model for remotely controlling the direction of a quantumcontrolledmobile robot equippedwith n-movements.The proposed algorithm is based on the measurement of concurrence value for the different movements of the robot.Consider a faraway robot that moves in the deep space(e.g.,moves toward a galaxy),and it is required to control the direction of this robot from a ground station by some person Alice.She sends an unknown qubitα|0)+β|1)via the teleportation protocol to the robot.Then,the proposed algorithm decodes the received unknown qubit into an angleθ,that determines the motion direction of the robot,based on the concurrence value.The proposed algorithm has been tested for four and eight movements.Two simulators have been tested;IBM Quantum composer and IBM’s system,The two simulators achieved the same result approximately.The motion of any part of the robot is considered,if it has a pre-existing sensor system and a locomotive system,.We can use this technique in many places like in space robots(16 directions).The results show that the proposed technique can be easily used for a huge number of movements.However,increasing the number of movements of the robot will increase the number of qubits.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0306703)the National Natural Science Foundation of China(Grant No.92265208)。
文摘Different from the concept of universal computation,the universality of a quantum neural network focuses on the ability to approximate arbitrary functions and is an important guarantee for effectiveness.However,conventional approaches of constructing a universal quantum neural network may result in a huge quantum register that is challenging to implement due to noise on a near-term device.To address this,we propose a simple design of a duplication-free quantum neural network whose universality can be rigorously proven.Specifically,instead of using multiple duplicates of the quantum register,our method relies on a single quantum register combined with multiple activation functions to create nonlinearity and achieve universality.Accordingly,our proposal requires significantly fewer qubits with shallower circuits,and hence substantially reduces the resource overhead and the noise effect.In addition,simulations demonstrate that our universality design is able to achieve a better learning accuracy in the presence of noise,illustrating a great potential in solving larger-scale learning problems on near-term devices.
基金Supported by the National Natural Science Foundation of China (Grant Nos.12001480,11871318)Applied Basic Research Program of Shanxi Province (Grant No.201901D211461)+2 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Grant No.2020L0554)Excellent Doctoral Research Pro ject of Shanxi Province (Grant No.QZX-2020001)PhD Start-up Pro ject of Yuncheng University (Grant No.YQ-2019021)。
文摘Quantum many-body problem(QMBP)has become a hot topic in high energy physics and condensed matter physics.With the exponential increasing of the dimension of the Hilbert space,it becomes a big challenge to solve the QMBP even with the most powerful computers.With the rapid development of machine learning,artificial neural networks provide a powerful tool to represent or approximate quantum many-body states.In this paper,we aim to construct explicitly the neural network representations of graph states,without stochastic optimization of the network parameters.Our method shows constructively that all graph states can be represented precisely by proper neural networks originated from[Science,355,602(2017)]and formulated in[Sci.China-Phys.Mech.Astron.,63,210312(2020)].
基金Supported by the National Natural Science Foundation of China(Nos.12001480,11871318)the Applied Basic Research Program of Shanxi Province(No.201901D211461)+2 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2020L0554)the Excellent Doctoral Research Project of Shanxi Province(No.QZX-2020001)the PhD Start-up Project of Yuncheng University(No.YQ-2019021)。
文摘The quantum many-body problem(QMBP) has become a hot topic in high-energy physics and condensed-matter physics. With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the QMBP, even with the most powerful computers. With the rapid development of machine learning, artificial neural networks provide a powerful tool that can represent or approximate quantum many-body states. In this paper, we aim to explicitly construct the neural network representations of hypergraph states. We construct the neural network representations for any k-uniform hypergraph state and any hypergraph state,respectively, without stochastic optimization of the network parameters. Our method constructively shows that all hypergraph states can be represented precisely by the appropriate neural networks introduced in [Science 355(2017) 602] and formulated in [Sci. China-Phys.Mech. Astron. 63(2020) 210312].
基金supported by the National Natural Science Foundation of China(Grant Nos.11871318,11771009,11571213,and 11601300)the Fundamental Research Funds for the Central Universities(Grant Nos.GK201703093,and GK201801011)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2018JM1020)the Shaanxi Province Innovation Ability Support Program(Grant No.2018KJXX-054)the Subject Research Project of Yuncheng University(Grant No.XK-2018032)
文摘Machine learning is currently the most active interdisciplinary field having numerous applications; additionally, machine-learning techniques are used to research quantum many-body problems. In this study, we first propose neural network quantum states(NNQSs) with general input observables and explore a few related properties, such as the tensor product and local unitary operation. Second, we determine the necessary and sufficient conditions for the representability of a general graph state using normalized NNQS. Finally, to quantify the approximation degree of a given pure state, we define the best approximation degree using normalized NNQSs. Furthermore, we observe that some N-qubit states can be represented by a normalized NNQS, such as separable pure states, Bell states and GHZ states.