This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a...This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate...With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.展开更多
基金Project supported by the General Project of Natural Science Foundation of Hunan Province(Grant Nos.2024JJ5273 and 2023JJ50328)the Scientific Research Project of Education Department of Hunan Province(Grant Nos.22A0049 and 22B0699)。
文摘This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
基金supported by the Beijing Academy of Quantum Information Sciencessupported by the National Natural Science Foundation of China(Grant No.92365206)+2 种基金the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.