The anisotropic absorption and emission from semiconductor CdSe/CdS quantum rods(QRs)provide extra benefits among other photoluminescence nanocrystals.Using photo-induced alignment technique,the QRs can be oriented in...The anisotropic absorption and emission from semiconductor CdSe/CdS quantum rods(QRs)provide extra benefits among other photoluminescence nanocrystals.Using photo-induced alignment technique,the QRs can be oriented in liquid crystal polymer matrix at a large scale.In this article,a 2D Dammann grating pattern,within“SKL”characters domains aligned QRs in composite film,was fabricated by multi-step photo exposure using several photo masks,and a continuous geometric lens profile pattern aligned QRs was realized by the single step polarization converting holographic irradiation method.Both polarized optical microscope and fluorescence microscope are employed to determine the liquid crystal director profiles and QRs anisotropic excitation properties.We have been able to orient the QRs in fine binary and continuous patterns that confirms the strong quantum rod aligning ability of the proposed method.Thus,the proposed approach paves a way for photoinduced flexible QRs alignments to provide a highly specific and difficult-to-replicate security application at a large scale.展开更多
The linear-polarization optical property of CdSe quantum rods is studied in the framework of effectivemass envelope function theory. The effects of shape and magnetic field on the linear polarization factors are inves...The linear-polarization optical property of CdSe quantum rods is studied in the framework of effectivemass envelope function theory. The effects of shape and magnetic field on the linear polarization factors are investigated. It is found that CdSe quantum spheres have negative polarization factors (xy-polarized emission)and quantum long rods with small radius have positive linear polarization factors (z-polarized emission). The z-direction is the direction of the c axis. Quantum long rods with large radius have negative linear polarization factors,due to the hexagonal crystal symmetry and the crystal field splitting energy. The linear polarization factors decrease and may change from a positive value to a negative value;i, e. ,the z-polarized emissions decrease relative to xy-polarized emissions as the magnetic field applied along the z direction increases.展开更多
Magnetic field and temperature dependence of the properties of the ground state of the strong-coupling bound magnetopolaron in quantum rods (QRs) with hydrogenic impurity is studied by means of the Huybrechts- Lee-L...Magnetic field and temperature dependence of the properties of the ground state of the strong-coupling bound magnetopolaron in quantum rods (QRs) with hydrogenic impurity is studied by means of the Huybrechts- Lee-Low-Pines transformation method and the quantum statistical theory. The expressions for the ground-state energy and the mean number ofphonons of the magnetopolaron are derived. Results of the numerical calculations show that the bound state of the magnetopolaron cannot be formed when the value of the aspect ratio of the QR, the dielectric constant ratio, the electron-phonon coupling strength or the temperature parameter is small. The larger the deviation of the value of aspect ratio e′ from 1 is, the more it is unfavorable to the stability of the ground state of the magnetopolaron. When the magnetopolaron is in the bound state, the absolute value of its ground-state energy and its mean number ofphonons increase with an increase of the dielectric constant ratio and confinement strength of QRs, but decrease with an increase in the cyclotron frequency of the external magnetic field and the temperature. The absolute value of the ground-state energy and the mean number of phonons of the magnetopolaron decrease with decreasing e′ when e′ 〈 1, but decrease with increasing e′ when e′ 〉 1. They get the maximum value at e′=1.展开更多
Unidirectionally aligned nanorods(NRs)are of great importance for different applications,including displays,lighting,and photodetectors.Recently,many alignment techniques were studied to align quantum rods(QRs).Howeve...Unidirectionally aligned nanorods(NRs)are of great importance for different applications,including displays,lighting,and photodetectors.Recently,many alignment techniques were studied to align quantum rods(QRs).However,the brightness of these films,due to the limited concentration of aligned quantum rods in the film,is not enough for their implementation as brightness enhancement films(BEFs)in displays.This can be ascribed to the poor miscibility of quantum rods in polymer and strong concentration dependence of the polarized emission.The ligands of NR are very important for the alignment and brightness.In this article,we proposed a ligand combination comprising T-shape promesogenic phosphonic acid,which on being photoaligned provides mutually parallel alignment of the quantum rods.The T-shape ligands enable the fabrication of hybrid films with a QRs concentration as high as 10 wt.%–20 wt.%retaining high brightness and luminescence polarization property.Later,we used these films in the in-plane switching(IPS)display backlight that shows the color gamut up to 121%of national television system committee(NTSC)(CIE1931),liquid-crystal display(LCD)efficiency up to 7.9%,power efficacy 103±2 nits/W,and the high brightness of~550±10 nits.Thus,the proposed ligands can be used for the alignment of a variety of nanorods.展开更多
The Hamiltonian of a quantum rod with an ellipsoidal boundary is given after a coordinate transformation which changes the ellipsoidal boundary into a spherical one.We then study the first internal excited state energ...The Hamiltonian of a quantum rod with an ellipsoidal boundary is given after a coordinate transformation which changes the ellipsoidal boundary into a spherical one.We then study the first internal excited state energy,the excitation energy and the frequency of the transition spectral line between the first internal excited state and the ground state of the strong-coupling polaron in a quantum rod.The effects of the electron-phonon coupling strength,the aspect ratio of the ellipsoid,the transverse radius of quantum rods and the transverse and longitudinal effective confinement length are taken into consideration by using a linear combination operator and the unitary transformation methods.It is found that the first internal excited state energy,the excitation energy and the frequency of the transition spectral line are increasing functions of the electron-phonon coupling strength,whereas they are decreasing ones of the transverse radius of quantum rods and the aspect ratio.The first internal excited state energy,the excitation energy and the frequency of the transition spectral line increase with decreasing transverse and longitudinal effective confinement length.展开更多
The Hamiltonian of the quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation. Using the linear-combination operator and unitary transformation methods, the vibrational frequency an...The Hamiltonian of the quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation. Using the linear-combination operator and unitary transformation methods, the vibrational frequency and the ground-state energy of weak-coupling polarons are obtained. Numerical results illustrate that the vibrational frequency increases with the decrease of the effective radius R0 of the ellipsoidal parabolic potential and the aspect ratio e of the ellipsoid, and that the ground-state energy increases with the decrease of the effective radius R0 and the electron-LO-phonon coupling strength α. In addition, the ground-state energy decreases with increasing aspect ratio e within 0 〈 e 〈 1 and reaches a minimum when e = 1, and then increases with increasing e for e 〉 1.展开更多
The Hamiltonian of a quantum rod with a boundary is presented after a coordinate transformation that changes the original ellipsoidal boundary into a spherical one. We then study the effect of temperature on the vibra...The Hamiltonian of a quantum rod with a boundary is presented after a coordinate transformation that changes the original ellipsoidal boundary into a spherical one. We then study the effect of temperature on the vibrational frequency and the ground state binding energy of the strong-coupling polaron in the rod. The two quantities are expressed as functions of the aspect ratio of the ellipsoid, the transverse and the longitudinal effective confinement lengths, the temperature and the electron-phonon coupling strength by linear combination operator and unitary transformation methods. It is found that the vibrational frequency and the ground state binding energy will increase rapidly with decreasing transverse and longitudinal effective confinement lengths. They are increasing functions of the electron- phonon coupling strength but become decreasing ones of the temperature and the aspect ratio.展开更多
The Hamiltonian of a quantum rod with an ellipsoidal boundary is given by using a coordinate transformation in which the ellipsoidal boundary is changed into a spherical one.Under the condition of strong electron-long...The Hamiltonian of a quantum rod with an ellipsoidal boundary is given by using a coordinate transformation in which the ellipsoidal boundary is changed into a spherical one.Under the condition of strong electron-longitudinal optical phonon coupling in the rod,we obtain both the electron eigenfunctions and the eigenenergies of the ground and first-excited state by using the Pekar-type variational method.This quantum rod system may be used as a two-level qubit.When the electron is in the superposition state of the ground and first-excited states,the probability density of the electron oscillates in the rod with a certain period.It is found that the oscillation period is an increasing function of the ellipsoid aspect ratio and the transverse and longitudinal effective confinement lengths of the quantum rod,whereas it is a decreasing function of the electron-phonon coupling strength.展开更多
CdS nanorods have been sorted by length using a density gradient ultracentrifuge rate separation method. The fractions containing longer rods showed relatively stronger oxygen-related surface trap emission, while the ...CdS nanorods have been sorted by length using a density gradient ultracentrifuge rate separation method. The fractions containing longer rods showed relatively stronger oxygen-related surface trap emission, while the shorter ones had dominant band-edge emission. These results suggest that the final length distribution of CdS nanorods is not a result of random nucleation and growth, but is related to the local synthesis conditions. Inspired by these findings, different synthesis environments (N2, air, and 02) have been employed in order to tailor the length distribution. In addition to the rod length, the photoluminescence properties of CdS nanorods can also be manipulated. Increasing the oxygen partial pressure significantly changed the growth behavior of CdS nanorods by improving the anisotropic growth.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)the National Natural Science Foundation of China(Nos.62005180,61935013)+2 种基金the Zhejiang Lab Open Research Project(No.K2022MG0AB01)RGC of Hong Kong S.A.R.(No.26202019)the State Key Laboratory of Advanced Displays and Optoelectronics Technologies(HKUST)(No.ITC-PSKL12EG02)。
文摘The anisotropic absorption and emission from semiconductor CdSe/CdS quantum rods(QRs)provide extra benefits among other photoluminescence nanocrystals.Using photo-induced alignment technique,the QRs can be oriented in liquid crystal polymer matrix at a large scale.In this article,a 2D Dammann grating pattern,within“SKL”characters domains aligned QRs in composite film,was fabricated by multi-step photo exposure using several photo masks,and a continuous geometric lens profile pattern aligned QRs was realized by the single step polarization converting holographic irradiation method.Both polarized optical microscope and fluorescence microscope are employed to determine the liquid crystal director profiles and QRs anisotropic excitation properties.We have been able to orient the QRs in fine binary and continuous patterns that confirms the strong quantum rod aligning ability of the proposed method.Thus,the proposed approach paves a way for photoinduced flexible QRs alignments to provide a highly specific and difficult-to-replicate security application at a large scale.
文摘The linear-polarization optical property of CdSe quantum rods is studied in the framework of effectivemass envelope function theory. The effects of shape and magnetic field on the linear polarization factors are investigated. It is found that CdSe quantum spheres have negative polarization factors (xy-polarized emission)and quantum long rods with small radius have positive linear polarization factors (z-polarized emission). The z-direction is the direction of the c axis. Quantum long rods with large radius have negative linear polarization factors,due to the hexagonal crystal symmetry and the crystal field splitting energy. The linear polarization factors decrease and may change from a positive value to a negative value;i, e. ,the z-polarized emissions decrease relative to xy-polarized emissions as the magnetic field applied along the z direction increases.
基金supported by the Natural Science Foundation of Hebei Province(No.A2008000463)the Science and Technology Research and Development Plan of Qinhuangdao(No.201101A027)
文摘Magnetic field and temperature dependence of the properties of the ground state of the strong-coupling bound magnetopolaron in quantum rods (QRs) with hydrogenic impurity is studied by means of the Huybrechts- Lee-Low-Pines transformation method and the quantum statistical theory. The expressions for the ground-state energy and the mean number ofphonons of the magnetopolaron are derived. Results of the numerical calculations show that the bound state of the magnetopolaron cannot be formed when the value of the aspect ratio of the QR, the dielectric constant ratio, the electron-phonon coupling strength or the temperature parameter is small. The larger the deviation of the value of aspect ratio e′ from 1 is, the more it is unfavorable to the stability of the ground state of the magnetopolaron. When the magnetopolaron is in the bound state, the absolute value of its ground-state energy and its mean number ofphonons increase with an increase of the dielectric constant ratio and confinement strength of QRs, but decrease with an increase in the cyclotron frequency of the external magnetic field and the temperature. The absolute value of the ground-state energy and the mean number of phonons of the magnetopolaron decrease with decreasing e′ when e′ 〈 1, but decrease with increasing e′ when e′ 〉 1. They get the maximum value at e′=1.
基金supported by the RGC of Hong Kong SAR,China(No.26202019)the funding for The State Key Laboratory of Advanced Displays and Optoelectronics Technologies.
文摘Unidirectionally aligned nanorods(NRs)are of great importance for different applications,including displays,lighting,and photodetectors.Recently,many alignment techniques were studied to align quantum rods(QRs).However,the brightness of these films,due to the limited concentration of aligned quantum rods in the film,is not enough for their implementation as brightness enhancement films(BEFs)in displays.This can be ascribed to the poor miscibility of quantum rods in polymer and strong concentration dependence of the polarized emission.The ligands of NR are very important for the alignment and brightness.In this article,we proposed a ligand combination comprising T-shape promesogenic phosphonic acid,which on being photoaligned provides mutually parallel alignment of the quantum rods.The T-shape ligands enable the fabrication of hybrid films with a QRs concentration as high as 10 wt.%–20 wt.%retaining high brightness and luminescence polarization property.Later,we used these films in the in-plane switching(IPS)display backlight that shows the color gamut up to 121%of national television system committee(NTSC)(CIE1931),liquid-crystal display(LCD)efficiency up to 7.9%,power efficacy 103±2 nits/W,and the high brightness of~550±10 nits.Thus,the proposed ligands can be used for the alignment of a variety of nanorods.
基金supported by the National Natural Science Foundation of China(No.10747002)
文摘The Hamiltonian of a quantum rod with an ellipsoidal boundary is given after a coordinate transformation which changes the ellipsoidal boundary into a spherical one.We then study the first internal excited state energy,the excitation energy and the frequency of the transition spectral line between the first internal excited state and the ground state of the strong-coupling polaron in a quantum rod.The effects of the electron-phonon coupling strength,the aspect ratio of the ellipsoid,the transverse radius of quantum rods and the transverse and longitudinal effective confinement length are taken into consideration by using a linear combination operator and the unitary transformation methods.It is found that the first internal excited state energy,the excitation energy and the frequency of the transition spectral line are increasing functions of the electron-phonon coupling strength,whereas they are decreasing ones of the transverse radius of quantum rods and the aspect ratio.The first internal excited state energy,the excitation energy and the frequency of the transition spectral line increase with decreasing transverse and longitudinal effective confinement length.
基金supported by the National Natural Science Foundation of China (No. 10347004)the Science Research for the Colleges and Universities of Inner Mongolia Autonomous Region (No. NJzy08085)
文摘The Hamiltonian of the quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation. Using the linear-combination operator and unitary transformation methods, the vibrational frequency and the ground-state energy of weak-coupling polarons are obtained. Numerical results illustrate that the vibrational frequency increases with the decrease of the effective radius R0 of the ellipsoidal parabolic potential and the aspect ratio e of the ellipsoid, and that the ground-state energy increases with the decrease of the effective radius R0 and the electron-LO-phonon coupling strength α. In addition, the ground-state energy decreases with increasing aspect ratio e within 0 〈 e 〈 1 and reaches a minimum when e = 1, and then increases with increasing e for e 〉 1.
基金Project supported by the National Natural Science Foundation of China (Grant No.10964005)
文摘The Hamiltonian of a quantum rod with a boundary is presented after a coordinate transformation that changes the original ellipsoidal boundary into a spherical one. We then study the effect of temperature on the vibrational frequency and the ground state binding energy of the strong-coupling polaron in the rod. The two quantities are expressed as functions of the aspect ratio of the ellipsoid, the transverse and the longitudinal effective confinement lengths, the temperature and the electron-phonon coupling strength by linear combination operator and unitary transformation methods. It is found that the vibrational frequency and the ground state binding energy will increase rapidly with decreasing transverse and longitudinal effective confinement lengths. They are increasing functions of the electron- phonon coupling strength but become decreasing ones of the temperature and the aspect ratio.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10964005)
文摘The Hamiltonian of a quantum rod with an ellipsoidal boundary is given by using a coordinate transformation in which the ellipsoidal boundary is changed into a spherical one.Under the condition of strong electron-longitudinal optical phonon coupling in the rod,we obtain both the electron eigenfunctions and the eigenenergies of the ground and first-excited state by using the Pekar-type variational method.This quantum rod system may be used as a two-level qubit.When the electron is in the superposition state of the ground and first-excited states,the probability density of the electron oscillates in the rod with a certain period.It is found that the oscillation period is an increasing function of the ellipsoid aspect ratio and the transverse and longitudinal effective confinement lengths of the quantum rod,whereas it is a decreasing function of the electron-phonon coupling strength.
文摘CdS nanorods have been sorted by length using a density gradient ultracentrifuge rate separation method. The fractions containing longer rods showed relatively stronger oxygen-related surface trap emission, while the shorter ones had dominant band-edge emission. These results suggest that the final length distribution of CdS nanorods is not a result of random nucleation and growth, but is related to the local synthesis conditions. Inspired by these findings, different synthesis environments (N2, air, and 02) have been employed in order to tailor the length distribution. In addition to the rod length, the photoluminescence properties of CdS nanorods can also be manipulated. Increasing the oxygen partial pressure significantly changed the growth behavior of CdS nanorods by improving the anisotropic growth.