Rashba spin splitting(RSS)and quantum spin Hall effect(QSHE)have attracted enormous interest due to their great significance in the application of spintronics.In this work,we theoretically proposed a new two-dimension...Rashba spin splitting(RSS)and quantum spin Hall effect(QSHE)have attracted enormous interest due to their great significance in the application of spintronics.In this work,we theoretically proposed a new two-dimensional(2D)material H–Pb–F with coexistence of giant RSS and quantum spin Hall effec by using the ab initio calculations.Our results show that H–Pb–F possesses giant RSS(1.21 eV·A)and the RSS can be tuned up to 4.16 e V·A by in-plane biaxial strain,which is a huge value among 2D materials.Furthermore,we also noticed that H–Pb–F is a 2D topological insulator(TI)duo to the strong spin–orbit coupling(SOC)interaction,and the large topological gap is up to 1.35 e V,which is large enough for for the observation of topological edge states at room temperature.The coexistence of giant RSS and quantum spin Hall effect greatly broadens the potential application of H–Pb–F in the field of spintronic devices.展开更多
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essenc...The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essence of intrinsic spin-orbit coupling is analytically calculated. We find that for each valley and spin, Cs is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states, consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin-orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin-orbit (RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin-orbit coupling, while the other two layers have zero intrinsic spin-orbit coupling. Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.展开更多
The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the ...The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.展开更多
The quantum spin Hall effect (QSHE) was first realized in HgTe quantum wells (QWs), which remain the only known two-dimensional topological insulator so far. In this paper, we have systematically studied the effec...The quantum spin Hall effect (QSHE) was first realized in HgTe quantum wells (QWs), which remain the only known two-dimensional topological insulator so far. In this paper, we have systematically studied the effect of the thickness fluctuation of HgTe QWs on the QSHE. We start with the case of constant mass with random distributions, and reveal that the disordered system can be well described by a virtual uniform QW with an effective mass when the number of components is small. When the number is infinite and corresponds to the real fluctuation, we find that the QSHE is not only robust, but also can be generated by relatively strong fluctuation. Our results imply that the thickness fluctuation does not cause backscattering, and the QSHE is robust to it.展开更多
We study a toy square-lattice model under a uniform magnetic field. Using the Landauer Biittiker fornmla, we calculate the transport properties of the system on a two-terminal, a four-terminal and a six-terminM device...We study a toy square-lattice model under a uniform magnetic field. Using the Landauer Biittiker fornmla, we calculate the transport properties of the system on a two-terminal, a four-terminal and a six-terminM device. W'e find that the quantum spin Hall (QSH) effect appears ill energy ranges where the spin-up and spin-down subsystems have different filling factors. We also study the robustness of the resulting QSH effect and find that it is robust when the Fermi levels of both spin subsystems are far away from the energy plateaus but is fragile when the Fermi level of any spin subsystem is near the energy plateaus. These results provide an example of the QSH effect with a physical origin other than time-reversal (TR) preserving spin-orbit coupling (SOC).展开更多
Though the quantum spin Hall effect(QSHE) in two-dimensional(2 D) crystals has been widely explored, the experimental realization of quantum transport properties is only limited to HgTe/CdTe or InAs/GaSb quantum w...Though the quantum spin Hall effect(QSHE) in two-dimensional(2 D) crystals has been widely explored, the experimental realization of quantum transport properties is only limited to HgTe/CdTe or InAs/GaSb quantum wells. Here we employ a tight-binding model on the basis of d(z^2), d(xy), and d(x^2-y^2) orbitals to propose QSHE in the triangular lattice, which are driven by a crossing of electronic bands at the Γ point. Remarkably, 2 D oxidized Mxenes W2 M2 C3 are ideal materials with nontrivial gap of 0.12 eV, facilitating room-temperature observations in experiments. We also find that the nontrivially topological properties of these materials are sensitive to the cooperative effect of the electron correlation and spin-orbit coupling. Due to the feasible exfoliation from its 3 D MAX phase, our work paves a new direction towards realizing QSHE with low dissipation.展开更多
Germanene,the germanium analogue of graphene,shares many properties with its carbon counterpart.Both materials are two-dimensional materials that host Dirac fermions.There are,however,also a few important differences ...Germanene,the germanium analogue of graphene,shares many properties with its carbon counterpart.Both materials are two-dimensional materials that host Dirac fermions.There are,however,also a few important differences between these two materials:(1)graphene has a planar honeycomb lattice,whereas germanene’s honeycomb lattice is buckled and(2)the spin-orbit gap in germanene is predicted to be about three orders of magnitude larger than the spin-orbit gap in graphene(24 meV for germanene versus 20μeV for graphene).Surprisingly,scanning tunneling spectra recorded on germanene layers synthesized on different substrates do not show any sign of the presence of a spin-orbit gap.To date the exact origin of the absence of this spin-orbit gap in the scanning tunneling spectra of germanene has remained a mystery.In this work we show that the absence of the spin-orbit gap can be explained by germanene’s exceptionally low work function of only 3.8 eV.The difference in work function between germanene and the scanning tunneling microscopy tip(the work functions of most commonly used STM tips are in the range of 4.5 to 5.5 eV)gives rise to an electric field in the tunnel junction.This electric field results in a strong suppression of the size of the spin-orbit gap.展开更多
We review the recent experimental progress towards observing quantum spin Hall effect in inverted InAs/GaSb quantum wells (QWs). Low temperature transport measurements in the hybridization gap show bulk conductivity...We review the recent experimental progress towards observing quantum spin Hall effect in inverted InAs/GaSb quantum wells (QWs). Low temperature transport measurements in the hybridization gap show bulk conductivity of a non-trivial origin, while the length and width dependence of con- ductance in this regime show strong evidence for the existence of helical edge modes proposed by Liu et al. [Phys. Rev. Lett., 2008, 100: 236601]. Surprisingly, edge modes persist in spite of compa- rable bulk conduction and show only weak dependence on magnetic field. We elucidate that seeming independence of edge on bulk transport comes due to the disparity in Fermi-wave vectors between the bulk and the edge, leading to a total internal reflection of the edge modes.展开更多
Topological insulators' properties and their potential device applications are reviewed. We also explain why topologi- cal insulator (TI) nanostructnres are an important avenue for research and discuss some methods...Topological insulators' properties and their potential device applications are reviewed. We also explain why topologi- cal insulator (TI) nanostructnres are an important avenue for research and discuss some methods by which TI nanostructures are produced and characterized. The rapid development of high-quality TI nanostructures provides an ideal platform to ex- ploit salient physical phenomena that have been theoretically predicted but not yet experimentally realized.展开更多
The successfully experimental fabrication of two-dimensional Te monolayer films[Phys.Rev.Lett.119106101(2017)]has promoted the researches on the group-VI monolayer materials.In this work,the electronic structures and ...The successfully experimental fabrication of two-dimensional Te monolayer films[Phys.Rev.Lett.119106101(2017)]has promoted the researches on the group-VI monolayer materials.In this work,the electronic structures and topological properties of a group-VI binary compound of TeSe_(2) monolayers are studied based on the density functional theory and Wannier function method.Three types of structures,namely,a-TeSe_(2),b-TeSe_(2),and g-TeSe_(2),are proposed for the TeSe_(2) monolayer among which the a-TeSe_(2) is found being the most stable.All the three structures are semiconductors with indirect band gaps.Very interestingly,the g-TeSe_(2) monolayer becomes a quantum spin Hall(QSH)insulator with a global nontrivial energy gap of 0.14 eV when a 3.5%compressive strain is applied.The opening of the global band gap is understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px,py orbitals and Te px,py orbitals during the process.Our work realizes topological states in the group-VI monolayers and promotes the potential applications of the materials in spintronics and quantum computations.展开更多
Two-dimensional topological insulators(2DTIs)have attracted increasing attention during the past few years.New 2DTIs with increasing larger spin-orbit coupling(SOC)gaps have been predicted by theoretical calculations ...Two-dimensional topological insulators(2DTIs)have attracted increasing attention during the past few years.New 2DTIs with increasing larger spin-orbit coupling(SOC)gaps have been predicted by theoretical calculations and some of them have been synthesized experimentally.In this review,the 2DTIs,ranging from single element graphene-like materials to bi-elemental transition metal chalcogenides(TMDs)and to multi-elemental materials,with different thicknesses,structures,and phases,have been summarized and discussed.The topological properties(especially the quantum spin Hall effect and Dirac fermion feature)and potential applications have been summarized.This review also points out the challenge and opportunities for future 2DTI study,especially on the device applications based on the topological properties.展开更多
In this paper, we find that topological insulators with time-reversal symmetry and inversion symmetry featuring two-dimensional quantum spin Hall (QSH) state can be divided into 16 classes, which are characterized b...In this paper, we find that topological insulators with time-reversal symmetry and inversion symmetry featuring two-dimensional quantum spin Hall (QSH) state can be divided into 16 classes, which are characterized by four Z2 topological variables ζk =0, 1 at four points with high symmetry in the Brillouin zone. We obtain the corresponding edge states for each one of these sixteen classes of QSHs. In addition, it is predicted that massless fermionic excitations appear at the quantum phase transition between different QSH states. In the end, we also briefly discuss the threedimensional case.展开更多
A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the pudd...A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the puddles of two-dimensional (2D) QSHE, which is simulated as quantum dots modeled by 2D massive Dirac Hamiltouian. We demonstrate that the spin dephasing effect can originate from the combination of the Rashba spin-orbit coupling and electron-phonon interaction, which gives rise to inelastic backscattering in edge states within the topological insulator quantum dots, although the time-reversal symmetry is preserved throughout. Finally, we discuss the tunneling between extended helical edge states and local edge states in the QSH quantum dots, which leads to backscattering in the extended edge states. These results can explain the more robust edge transport in InAs/GaSb QSH systems.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11874316,11404275,and 11474244)the National Basic Research Program of China(Grant No.2015CB921103)+2 种基金the Natural Science Foundation of Hunan Province,China(Grant Nos.2016JJ3118 and 2020JJ4244)the Scientific Research Foundation of the Education Bureau of Hunan Province,China(Grant Nos.16K084,17K086,and 21A049)the Fund for the Innovative Research Team in University(Grant No.IRT13093).
文摘Rashba spin splitting(RSS)and quantum spin Hall effect(QSHE)have attracted enormous interest due to their great significance in the application of spintronics.In this work,we theoretically proposed a new two-dimensional(2D)material H–Pb–F with coexistence of giant RSS and quantum spin Hall effec by using the ab initio calculations.Our results show that H–Pb–F possesses giant RSS(1.21 eV·A)and the RSS can be tuned up to 4.16 e V·A by in-plane biaxial strain,which is a huge value among 2D materials.Furthermore,we also noticed that H–Pb–F is a 2D topological insulator(TI)duo to the strong spin–orbit coupling(SOC)interaction,and the large topological gap is up to 1.35 e V,which is large enough for for the observation of topological edge states at room temperature.The coexistence of giant RSS and quantum spin Hall effect greatly broadens the potential application of H–Pb–F in the field of spintronic devices.
基金Majeed Ur Rehman acknowledges the support from the Chinese Academy of Sciences(CAS)and TWAS for his Ph.D.studies at the University of Science and Technology,China in the category of 2016 CAS-TWAS President’s Fellowship Awardee(Grant No.2016-156)
文摘The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essence of intrinsic spin-orbit coupling is analytically calculated. We find that for each valley and spin, Cs is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states, consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin-orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin-orbit (RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin-orbit coupling, while the other two layers have zero intrinsic spin-orbit coupling. Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB929504,2011CB922103,and 2010CB923400)the National Natural Science Foundation of China (Grant Nos. 11225420,11074110,11174125,11074109,and 91021003)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China,the US NSF (Grant Nos. DMR-0906816 and DMR-1205734)Princeton MRSEC (Grant No. DMR-0819860)
文摘The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11104189 and 11074023)the National Basic Research Program of China (Grant Nos. 2011CBA00102,2011CB921700,and 2012CB821403)
文摘The quantum spin Hall effect (QSHE) was first realized in HgTe quantum wells (QWs), which remain the only known two-dimensional topological insulator so far. In this paper, we have systematically studied the effect of the thickness fluctuation of HgTe QWs on the QSHE. We start with the case of constant mass with random distributions, and reveal that the disordered system can be well described by a virtual uniform QW with an effective mass when the number of components is small. When the number is infinite and corresponds to the real fluctuation, we find that the QSHE is not only robust, but also can be generated by relatively strong fluctuation. Our results imply that the thickness fluctuation does not cause backscattering, and the QSHE is robust to it.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11104189 and 11074023)the National Basic Research Program of China (Grant Nos. 2011CBA00102, 2011CB921700, and 2012CB821403)
文摘We study a toy square-lattice model under a uniform magnetic field. Using the Landauer Biittiker fornmla, we calculate the transport properties of the system on a two-terminal, a four-terminal and a six-terminM device. W'e find that the quantum spin Hall (QSH) effect appears ill energy ranges where the spin-up and spin-down subsystems have different filling factors. We also study the robustness of the resulting QSH effect and find that it is robust when the Fermi levels of both spin subsystems are far away from the energy plateaus but is fragile when the Fermi level of any spin subsystem is near the energy plateaus. These results provide an example of the QSH effect with a physical origin other than time-reversal (TR) preserving spin-orbit coupling (SOC).
基金Supported by the Natural Science Foundation of Shandong Province under Grant No ZR2018MA033the National Natural Science Foundation of China under Grant No 11274143
文摘Though the quantum spin Hall effect(QSHE) in two-dimensional(2 D) crystals has been widely explored, the experimental realization of quantum transport properties is only limited to HgTe/CdTe or InAs/GaSb quantum wells. Here we employ a tight-binding model on the basis of d(z^2), d(xy), and d(x^2-y^2) orbitals to propose QSHE in the triangular lattice, which are driven by a crossing of electronic bands at the Γ point. Remarkably, 2 D oxidized Mxenes W2 M2 C3 are ideal materials with nontrivial gap of 0.12 eV, facilitating room-temperature observations in experiments. We also find that the nontrivially topological properties of these materials are sensitive to the cooperative effect of the electron correlation and spin-orbit coupling. Due to the feasible exfoliation from its 3 D MAX phase, our work paves a new direction towards realizing QSHE with low dissipation.
基金the Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO)for financial support.
文摘Germanene,the germanium analogue of graphene,shares many properties with its carbon counterpart.Both materials are two-dimensional materials that host Dirac fermions.There are,however,also a few important differences between these two materials:(1)graphene has a planar honeycomb lattice,whereas germanene’s honeycomb lattice is buckled and(2)the spin-orbit gap in germanene is predicted to be about three orders of magnitude larger than the spin-orbit gap in graphene(24 meV for germanene versus 20μeV for graphene).Surprisingly,scanning tunneling spectra recorded on germanene layers synthesized on different substrates do not show any sign of the presence of a spin-orbit gap.To date the exact origin of the absence of this spin-orbit gap in the scanning tunneling spectra of germanene has remained a mystery.In this work we show that the absence of the spin-orbit gap can be explained by germanene’s exceptionally low work function of only 3.8 eV.The difference in work function between germanene and the scanning tunneling microscopy tip(the work functions of most commonly used STM tips are in the range of 4.5 to 5.5 eV)gives rise to an electric field in the tunnel junction.This electric field results in a strong suppression of the size of the spin-orbit gap.
文摘We review the recent experimental progress towards observing quantum spin Hall effect in inverted InAs/GaSb quantum wells (QWs). Low temperature transport measurements in the hybridization gap show bulk conductivity of a non-trivial origin, while the length and width dependence of con- ductance in this regime show strong evidence for the existence of helical edge modes proposed by Liu et al. [Phys. Rev. Lett., 2008, 100: 236601]. Surprisingly, edge modes persist in spite of compa- rable bulk conduction and show only weak dependence on magnetic field. We elucidate that seeming independence of edge on bulk transport comes due to the disparity in Fermi-wave vectors between the bulk and the edge, leading to a total internal reflection of the edge modes.
基金supported by the National Young 1000 Talents Plan of Chinathe Pu Jiang Talent Plan in Shanghai City, China
文摘Topological insulators' properties and their potential device applications are reviewed. We also explain why topologi- cal insulator (TI) nanostructnres are an important avenue for research and discuss some methods by which TI nanostructures are produced and characterized. The rapid development of high-quality TI nanostructures provides an ideal platform to ex- ploit salient physical phenomena that have been theoretically predicted but not yet experimentally realized.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574051 and 11874117)Natural Science Foundation of Shanghai,China(Grant No.21ZR1408200).
文摘The successfully experimental fabrication of two-dimensional Te monolayer films[Phys.Rev.Lett.119106101(2017)]has promoted the researches on the group-VI monolayer materials.In this work,the electronic structures and topological properties of a group-VI binary compound of TeSe_(2) monolayers are studied based on the density functional theory and Wannier function method.Three types of structures,namely,a-TeSe_(2),b-TeSe_(2),and g-TeSe_(2),are proposed for the TeSe_(2) monolayer among which the a-TeSe_(2) is found being the most stable.All the three structures are semiconductors with indirect band gaps.Very interestingly,the g-TeSe_(2) monolayer becomes a quantum spin Hall(QSH)insulator with a global nontrivial energy gap of 0.14 eV when a 3.5%compressive strain is applied.The opening of the global band gap is understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px,py orbitals and Te px,py orbitals during the process.Our work realizes topological states in the group-VI monolayers and promotes the potential applications of the materials in spintronics and quantum computations.
基金Project supported by the Beijing Natural Science Foundation,China(Grant Nos.Z190006 and 4192054)the National Natural Science Foundation of China(Grant Nos.61971035,61901038,and 61725107)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)Beijing Institute of Technology Research Fund Program for Young Scholars(Grant No.3050011181814).
文摘Two-dimensional topological insulators(2DTIs)have attracted increasing attention during the past few years.New 2DTIs with increasing larger spin-orbit coupling(SOC)gaps have been predicted by theoretical calculations and some of them have been synthesized experimentally.In this review,the 2DTIs,ranging from single element graphene-like materials to bi-elemental transition metal chalcogenides(TMDs)and to multi-elemental materials,with different thicknesses,structures,and phases,have been summarized and discussed.The topological properties(especially the quantum spin Hall effect and Dirac fermion feature)and potential applications have been summarized.This review also points out the challenge and opportunities for future 2DTI study,especially on the device applications based on the topological properties.
基金Supported by the National Natural Science Foundation of China under Grant No.10874017National Basic Research Program of China(973 Program)under Grant No.2011CB921803
文摘In this paper, we find that topological insulators with time-reversal symmetry and inversion symmetry featuring two-dimensional quantum spin Hall (QSH) state can be divided into 16 classes, which are characterized by four Z2 topological variables ζk =0, 1 at four points with high symmetry in the Brillouin zone. We obtain the corresponding edge states for each one of these sixteen classes of QSHs. In addition, it is predicted that massless fermionic excitations appear at the quantum phase transition between different QSH states. In the end, we also briefly discuss the threedimensional case.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB921102,2012CB821402 and 2012CB921303)the National Natural Science Foundation of China(Grant Nos.11534001 and11274364)
文摘A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the puddles of two-dimensional (2D) QSHE, which is simulated as quantum dots modeled by 2D massive Dirac Hamiltouian. We demonstrate that the spin dephasing effect can originate from the combination of the Rashba spin-orbit coupling and electron-phonon interaction, which gives rise to inelastic backscattering in edge states within the topological insulator quantum dots, although the time-reversal symmetry is preserved throughout. Finally, we discuss the tunneling between extended helical edge states and local edge states in the QSH quantum dots, which leads to backscattering in the extended edge states. These results can explain the more robust edge transport in InAs/GaSb QSH systems.
基金supported by the National Natural Science Foundation of China(11734003,62275016,12274029,and 92163206)the National Key Research and Development Program of China(2020YFA0308800)+1 种基金Beijing Natural Science Foundation(Z210006 and Z190006)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB30000000)。