A new material structure with Al 0.22Ga 0.78As/In 0.15Ga 0.85As/GaAs emitter spacer layer and GaAs/In 0.15- Ga 0.85As/GaAs well for resonant tunneling diodes is designed and the corresponding device...A new material structure with Al 0.22Ga 0.78As/In 0.15Ga 0.85As/GaAs emitter spacer layer and GaAs/In 0.15- Ga 0.85As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated.RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio and the available current density for RTDs at room temperature are computed.Analysis on these results suggests that adjusting material structure and optimizing fabrication processes will be an effective means to improve the quality of RTDs.展开更多
The distinction between two microwave equivalent-circuit models,quasi Esaki tunneling model (QETM) and quantum well injection transit model (QWITM),for the resonant tunneling diode (RTD) is discussed in details,and tw...The distinction between two microwave equivalent-circuit models,quasi Esaki tunneling model (QETM) and quantum well injection transit model (QWITM),for the resonant tunneling diode (RTD) is discussed in details,and two groups of circuit parameters are extracted from experiment data by the least square fit method.Both theory analysis and the comparison of fit results demonstrate that QWITM is much more precise than QETM.In addition,the rationality of QWITM circuit's parameters confirms it too.On this basis,the resistive frequency is calculated,whose influence factors and improvement method are simply discussed as well.展开更多
文摘A new material structure with Al 0.22Ga 0.78As/In 0.15Ga 0.85As/GaAs emitter spacer layer and GaAs/In 0.15- Ga 0.85As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated.RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio and the available current density for RTDs at room temperature are computed.Analysis on these results suggests that adjusting material structure and optimizing fabrication processes will be an effective means to improve the quality of RTDs.
文摘The distinction between two microwave equivalent-circuit models,quasi Esaki tunneling model (QETM) and quantum well injection transit model (QWITM),for the resonant tunneling diode (RTD) is discussed in details,and two groups of circuit parameters are extracted from experiment data by the least square fit method.Both theory analysis and the comparison of fit results demonstrate that QWITM is much more precise than QETM.In addition,the rationality of QWITM circuit's parameters confirms it too.On this basis,the resistive frequency is calculated,whose influence factors and improvement method are simply discussed as well.