期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
1
作者 卢鹏丽 揽继茂 +3 位作者 唐建新 张莉 宋仕辉 朱虹羽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期743-754,共12页
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ... The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms. 展开更多
关键词 social networks influence maximization metaheuristic optimization quantum-behaved particle swarm optimization Lévy flight
下载PDF
Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii 被引量:2
2
作者 Yung-Chang Cheng Cheng-Kang Lee 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期963-980,共18页
This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspens... This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system. 展开更多
关键词 Speed-dependent nonlinear creep model quantum-behaved particle swarm optimization Uniform design Wheel rolling radius Hunting stability
下载PDF
A Novel Quantum-Behaved Particle Swarm Optimization Algorithm
3
作者 Tao Wu Lei Xie +2 位作者 Xi Chen Amir Homayoon Ashrafzadeh Shu Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第5期873-890,共18页
The efficient management of ambulance routing for emergency requests is vital to save lives when a disaster occurs.Quantum-behaved Particle Swarm Optimization(QPSO)algorithm is a kind of metaheuristic algorithms appli... The efficient management of ambulance routing for emergency requests is vital to save lives when a disaster occurs.Quantum-behaved Particle Swarm Optimization(QPSO)algorithm is a kind of metaheuristic algorithms applied to deal with the problem of scheduling.This paper analyzed the motion pattern of particles in a square potential well,given the position equation of the particles by solving the Schrödinger equation and proposed the Binary Correlation QPSO Algorithm Based on Square Potential Well(BC-QSPSO).In this novel algorithm,the intrinsic cognitive link between particles’experience information and group sharing information was created by using normal Copula function.After that,the control parameters chosen strategy gives through experiments.Finally,the simulation results of the test functions show that the improved algorithms outperform the original QPSO algorithm and due to the error gradient information will not be over utilized in square potential well,the particles are easy to jump out of the local optimum,the BC-QSPSO is more suitable to solve the functions with correlative variables. 展开更多
关键词 Ambulance routing problem quantum-behaved particle swarm optimization square potential well CONVERGENCE
下载PDF
Statistical analysis of fracture properties based on particle swarm optimization and Pearson correlation coefficient method 被引量:4
4
作者 ZHOU Yin FENG Xuan +3 位作者 Enhedelihai LUO Teng YANG Xueting HE Mei 《Global Geology》 2015年第1期41-48,共8页
Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow ... Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow shear wave. The polarization and time delay of the fast and slow shear wave can be used to predict the azimuth and density of fracture. The current identification method of fracture azimuth and fracture density is cross-correlation method. It is assumed that fast and slow shear waves were symmetrical wavelets after completely separating,and use the most similar characteristics of wavelets to identify fracture azimuth and density,but in the experiment the identification is poor in accuracy. Pearson correlation coefficient method is one of the methods for separating the fast wave and slow wave. This method is faster in calculating speed and better in noise immunity and resolution compared with the traditional cross-correlation method. Pearson correlation coefficient method is a non-linear problem,particle swarm optimization( PSO) is a good nonlinear global optimization method which converges fast and is easy to implement. In this study,PSO is combined with the Pearson correlation coefficient method to achieve identifying fracture property and improve the computational efficiency. 展开更多
关键词 fracture property shear-wave splitting statistic analysis Pearson correlation coefficient particleswarm optimization
下载PDF
Cultural Binary Particle Swarm Optimization Algorithm and Its Application in Fault Diagnosis 被引量:1
5
作者 黄海燕 顾幸生 《Journal of Donghua University(English Edition)》 EI CAS 2009年第5期474-481,共8页
Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence ... Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence rate when the problem is complex.Cultural algorithm(CA) can exploit knowledge extracted during the search to improve the performance of an evolutionary algorithm and show higher intelligence in treating complicated problems.So it is proposed that integrating binary particle swarm algorithm into cultural algorithm frame to develop a more efficient cultural binary particle swarm algorithm (CBPSOA) for fault feature selection.In CBPSOA,BPSOA is used as the population space of CA;the evolution of belief space adopts crossover,mutation and selection operations;the designs of acceptance function and influence function are improved according to the evolution character of BPSOA.The tests of optimizing functions show the proposed algorithm is valid and effective.Finally,CBPSOA is applied for fault feature selection.The simulations on Tennessee Eastman process (TEP) show the CBPSOA can perform better and more quickly converge than initial BPSOA.And with fault feature selection,more satisfied performance of fault diagnosis is obtained. 展开更多
关键词 cultural algorithm cultural binary particleswarm optimization algorithm fault feature selection fault diagnosis
下载PDF
RESEARCH ON OPTIMIZING THE MERGING RESULTS OF MULTIPLE INDEPENDENT RETRIEVAL SYSTEMS BY A DISCRETE PARTICLE SWARM OPTIMIZATION 被引量:1
6
作者 XieXingsheng ZhangGuoliang XiongYan 《Journal of Electronics(China)》 2012年第1期111-119,共9页
The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existi... The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existing result merging methods, usually suffered a great influence from the usefulness weight of different IRRS results and overlap rate among them. In this paper, we proposed a scheme that being capable of coalescing and optimizing a group of existing multi-sources-retrieval merging results effectively by Discrete Particle Swarm Optimization (DPSO). The experimental results show that the DPSO, not only can overall outperform all the other result merging algorithms it employed, but also has better adaptability in application for unnecessarily taking into account different IRRS's usefulness weight and their overlap rate with respect to a concrete query. Compared to other result merging algorithms it employed, the DPSO's recognition precision can increase nearly 24.6%, while the precision standard deviation for different queries can decrease about 68.3%. 展开更多
关键词 Multiple resource retrievals Result merging Meta-search engine Discrete particleswarm optimization (DPSO)
下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
7
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
下载PDF
A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization 被引量:2
8
作者 Cui HUANG Dakun ZHANG Guozhi SONG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期622-631,共10页
Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP ... Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP cores and plays an important role in the optimization of power consumption and throughput of the whole chip. In this paper, ba- sic concepts and related work of three-dimensional network on chip are introduced. Quantum-behaved particle swarm op- timization algorithm is applied to the mapping problem of three-dimensional network on chip for the first time. Sim- ulation results show that the mapping algorithm based on quantum-behaved particle swarm algorithm has faster con- vergence speed with much better optimization performance compared with the mapping algorithm based on particle swarm algorithm. It also can effectively reduce the power consumption of mapping of three-dimensional network on chip. 展开更多
关键词 three-dimensional network on chip mapping al-gorithm quantum-behaved particle swarm optimization al-gorithm particle swarm optimization algorithm low powerconsumption
原文传递
Automatic Image Inspection of Fabric Defects Based on Optimal Gabor Filter
9
作者 尉苗苗 李岳阳 +1 位作者 蒋高明 丛洪莲 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期545-548,共4页
An effective method for automatic image inspection of fabric defects is presented. The proposed method relies on a tuned 2D-Gabor filter and quantum-behaved particle swarm optimization( QPSO) algorithm. The proposed m... An effective method for automatic image inspection of fabric defects is presented. The proposed method relies on a tuned 2D-Gabor filter and quantum-behaved particle swarm optimization( QPSO) algorithm. The proposed method consists of two main steps:( 1) training and( 2) image inspection. In the image training process,the parameters of the 2D-Gabor filters can be tuned by QPSO algorithm to match with the texture features of a defect-free template. In the inspection process, each sample image under inspection is convoluted with the selected optimized Gabor filter.Then a simple thresholding scheme is applied to generating a binary segmented result. The performance of the proposed scheme is evaluated by using a standard fabric defects database from Cotton Incorporated. Good experimental results demonstrate the efficiency of proposed method. To further evaluate the performance of the proposed method,a real time test is performed based on an on-line defect detection system. The real time test results further demonstrate the effectiveness, stability and robustness of the proposed method,which is suitable for industrial production. 展开更多
关键词 fabric defect detection optimal Gabor filter quantum-behaved particle swarm optimization(QPSO) algorithm image segmentation
下载PDF
A Quantum-behaved Pigeon-Inspired Optimization approach to Explicit Nonlinear Model Predictive Controller for quadrotor
10
作者 Ning Xian Zhilong Chen 《International Journal of Intelligent Computing and Cybernetics》 EI 2018年第1期47-63,共17页
Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/appro... Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/approach–The paper deduces the nonlinear model of the quadrotor and uses the ENMPC to track the trajectory.Since the ENMPC has high demand for the state equation,the trajectory needed to be differentiated many times.When the trajectory is complicate or discontinuous,QPIO is proposed to linearize the trajectory.Then the linearized trajectory will be used in the ENMPC.Findings–Applying the QPIO algorithm allows the unequal distance sample points to be acquired to linearize the trajectory.Comparing with the equidistant linear interpolation,the linear interpolation error will be smaller.Practical implications–Small-sized quadrotors were adopted in this research to simplify the model.The model is supposed to be accurate and differentiable to meet the requirements of ENMPC.Originality/value–Traditionally,the quadrotor model was usually linearized in the research.In this paper,the quadrotormodel waskept nonlinear and the trajectorywill be linearizedinstead.Unequaldistance sample points were utilized to linearize the trajectory.In this way,the authors can get a smaller interpolation error.This method can also be applied to discrete systems to construct the interpolation for trajectory tracking. 展开更多
关键词 Explicit Nonlinear Model Predictive Controller Linearized trajectory quantum-behaved Pigeon-Inspired optimization
原文传递
基于计算几何方法的电动汽车充电站规划 被引量:76
11
作者 唐现刚 刘俊勇 +3 位作者 刘友波 冯瀚 谢连方 马玮 《电力系统自动化》 EI CSCD 北大核心 2012年第8期24-30,共7页
综合分析了影响电动汽车充电站规划的若干因素,建立了电动汽车充电站规划的最大收益模型。根据电动汽车充电特性和出行特征,计算电动汽车充电功率需求期望值,从而得出规划区充电站的容量需求。根据电动汽车的分布特点,通过调节加权伏罗... 综合分析了影响电动汽车充电站规划的若干因素,建立了电动汽车充电站规划的最大收益模型。根据电动汽车充电特性和出行特征,计算电动汽车充电功率需求期望值,从而得出规划区充电站的容量需求。根据电动汽车的分布特点,通过调节加权伏罗诺伊图的权重,使得服务区域划分更合理,同时保持各充电站负载率的均衡。利用粒子群优化算法的全局寻优能力,结合加权伏罗诺伊图,对充电站进行选址定容和服务区域划分的优化规划。算例分别针对不同电动汽车数量和不同分布方式的情况进行计算,结果验证了所述模型和方法的有效性和可行性。 展开更多
关键词 电动汽车 充电站规划 计算几何方法 加权伏罗诺伊图 粒子群优化
下载PDF
一种基于QPSO-RVM的模拟电路故障预测方法 被引量:27
12
作者 张朝龙 何怡刚 +2 位作者 邓芳明 袁莉芬 何威 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第8期1751-1757,共7页
提出了一种可应用于模拟电路故障预测的方法。通过提取被测电路的频域响应信号,计算皮尔逊相关系数,从而表征电路元件的健康度;在获取元件在不同时间点的健康度数据的基础上,推导出电路元件发生故障时的健康度阈值;将经量子粒子群算法... 提出了一种可应用于模拟电路故障预测的方法。通过提取被测电路的频域响应信号,计算皮尔逊相关系数,从而表征电路元件的健康度;在获取元件在不同时间点的健康度数据的基础上,推导出电路元件发生故障时的健康度阈值;将经量子粒子群算法优化的相关向量机算法用于故障预测,预测各个时间点的元件健康度变化轨迹并估计模拟电路的剩余有用寿命。该预测方法计算简单、通用性强,适用于实时预测。故障预测仿真实验与实例实验证明了方法的有效性与先进性。 展开更多
关键词 模拟电路 剩余有用寿命 健康度 皮尔逊相关系数 相关向量机 量子粒子群 Pearson product-moment correlation coefficient(PPMCC) relevance vector machine(RVM) quantum-behaved particle SWARM optimization(QPSO)
下载PDF
纯电动汽车用磷酸铁锂电池的模型参数分析 被引量:29
13
作者 牛利勇 时玮 +3 位作者 姜久春 张言茹 姜君 曹雪铭 《汽车工程》 EI CSCD 北大核心 2013年第2期127-132,共6页
鉴于纯电动汽车用磷酸铁锂电池在不同荷电状态下的电池特性差异较大,传统参数辨识方法得到的电池模型参数拟合精度较低。本文采用电化学阻抗谱来分析等效电路模型参数,以研究电池的电压特性和动态功率特性,通过综合分析实际充放电条件... 鉴于纯电动汽车用磷酸铁锂电池在不同荷电状态下的电池特性差异较大,传统参数辨识方法得到的电池模型参数拟合精度较低。本文采用电化学阻抗谱来分析等效电路模型参数,以研究电池的电压特性和动态功率特性,通过综合分析实际充放电条件的主要特征来提取电池典型的参数辨识工况,并利用粒子群优化算法分析模型参数。在不同温度和使用区间的验证表明该方法的精度较高,为磷酸铁锂电池的进一步研究提供依据。 展开更多
关键词 磷酸铁锂电池 等效电路模型 参数辨识 粒子群优化
下载PDF
基于自学习迁移粒子群算法及高斯罚函数的无功优化方法 被引量:35
14
作者 邓长虹 马庆 +2 位作者 肖永 游佳斌 李世春 《电网技术》 EI CSCD 北大核心 2014年第12期3341-3346,共6页
针对粒子群算法在求解无功优化问题时存在早熟收敛,易陷于局部最优的现象,提出了自学习迁移粒子群算法(self-learning migration particle swarm optimization,SLMPSO)。该算法在采用混沌序列对粒子群进行初始化操作,基于云模型理论的X... 针对粒子群算法在求解无功优化问题时存在早熟收敛,易陷于局部最优的现象,提出了自学习迁移粒子群算法(self-learning migration particle swarm optimization,SLMPSO)。该算法在采用混沌序列对粒子群进行初始化操作,基于云模型理论的X-条件云发生器对粒子的惯性权重进行自适应调整的基础上,引入一种迁移操作,以引导全局最优粒子的飞行方向,解决粒子群后期朝单一进化方向进化的问题,有效地增强了算法的全局寻优能力。针对电力系统无功优化中的离散变量归整问题,首先将离散变量完全化为连续变量进行迭代求解,在寻求至全局最优解后引入高斯罚函数对离散变量进行归整操作。以网损和电压偏离最小为目标,对IEEE标准30节点算例进行仿真计算,验证了所提算法的有效性和可行性。 展开更多
关键词 云模型 迁移操作 粒子群优化算法 高斯罚函数 无功优化
下载PDF
基于智能算法优化支持向量机模型的滑坡稳定性预测 被引量:22
15
作者 胡安龙 王孔伟 +3 位作者 李建林 唐芳艳 常德龙 郭振 《自然灾害学报》 CSCD 北大核心 2016年第5期46-54,共9页
影响滑坡稳定性的因素较多,利用滑坡稳定性影响因素快速预测滑坡稳定状态是当前滑坡研究的重要内容。利用相关系数、支持向量机、交叉验证法、遗传算法、粒子群优化算法等理论建立支持向量机模型对滑坡稳定性进行了研究。以湖北竹溪县19... 影响滑坡稳定性的因素较多,利用滑坡稳定性影响因素快速预测滑坡稳定状态是当前滑坡研究的重要内容。利用相关系数、支持向量机、交叉验证法、遗传算法、粒子群优化算法等理论建立支持向量机模型对滑坡稳定性进行了研究。以湖北竹溪县197个滑坡为例,研究结果表明:遗传算法优化的支持向量机滑坡稳定性预测模型预测效果最好,与实际情况吻合得最好。最佳参数c为3.001 6、g为0.041 008,训练集滑坡稳定性预测的正确率为84%,测试集滑坡稳定性预测的正确率为79.32%。因此所提遗传算法优化的支持向量机滑坡稳定性预测模型对于滑坡稳定性分析具有一定参考价值。 展开更多
关键词 滑坡稳定性 相关系数 支持向量机 遗传算法 粒子群优化算法
下载PDF
基于粒子群小波神经网络的公交到站时间预测 被引量:21
16
作者 季彦婕 陆佳炜 +1 位作者 陈晓实 胡波 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第3期60-66,共7页
公交到站时间的实时预测是公交出行信息发布、公交出行诱导、公交动态调度的关键技术.基于公交车辆运行特性分析,将公交到站时间分为路段运行时间和站点停靠时间两部分,并考虑工作日与周末的运行特性差异,最后结合迭代思想提出利用粒子... 公交到站时间的实时预测是公交出行信息发布、公交出行诱导、公交动态调度的关键技术.基于公交车辆运行特性分析,将公交到站时间分为路段运行时间和站点停靠时间两部分,并考虑工作日与周末的运行特性差异,最后结合迭代思想提出利用粒子群小波神经网络模型预测公交到站时间.实例分析表明:粒子群算法能有效降低小波神经网络模型的训练误差;结合迭代法使用公交车上一站运行时间作为预测输入能够有效提高预测精度;该预测模型对于公交车在工作日和周末到站时间的预测均能达到较高的精度,平均绝对百分比误差分别为10.82%和9.85%. 展开更多
关键词 智能交通 公交到站时间预测 小波神经网络 公交 粒子群算法 迭代法
下载PDF
基于QPSO算法的电力变压器优化设计 被引量:20
17
作者 潘再平 张震 潘晓弘 《电工技术学报》 EI CSCD 北大核心 2013年第11期42-47,共6页
首先研究以穷举法求解变压器优化设计(Transformer Design Optimization,TDO)问题。为解决穷举法计算效率低下的问题,应用一种全局优化算法——量子粒子群算法(QuantumBehaved Particle Swarm Optimization,QPSO)来求解TDO,并提出一种... 首先研究以穷举法求解变压器优化设计(Transformer Design Optimization,TDO)问题。为解决穷举法计算效率低下的问题,应用一种全局优化算法——量子粒子群算法(QuantumBehaved Particle Swarm Optimization,QPSO)来求解TDO,并提出一种目标函数比较原则以处理多约束问题。变压器优化设计中,优化参数、约束和目标函数均有非连续和非线性的特性,本文验证了QPSO擅于求解该类型问题。针对算法中唯一的控制参数,以穷举法的计算结果为参照标准,研究了两种不同控制策略下QPSO的求解特性,并给出求解TDO问题的最佳参数控制策略。通过实例计算验证了QPSO的高计算效率和优良的寻优能力。 展开更多
关键词 变压器优化设计 穷举法 量子粒子群算法 控制参数 控制策略
下载PDF
基于量子粒子群搜索策略的混合蛙跳算法 被引量:12
18
作者 唐德玉 蔡先发 +1 位作者 齐德昱 杨进 《计算机工程与应用》 CSCD 2012年第29期29-33,共5页
混合蛙跳算法(SFLA)是一种全新的群体智能优化算法。针对基本混合蛙跳算法局部搜索能力差,因而优化精度低、收敛速度慢的缺点,引入量子粒子群算法的搜索策略,提出了一种基于量子粒子群搜索策略的混合蛙跳算法(QPSO-SFLA)。通过对基准函... 混合蛙跳算法(SFLA)是一种全新的群体智能优化算法。针对基本混合蛙跳算法局部搜索能力差,因而优化精度低、收敛速度慢的缺点,引入量子粒子群算法的搜索策略,提出了一种基于量子粒子群搜索策略的混合蛙跳算法(QPSO-SFLA)。通过对基准函数进行测试,实验结果表明改进的算法大大提高了算法的收敛速度,增强了算法的寻优能力。 展开更多
关键词 群体智能优化 搜索策略 混合蛙跳算法 量子粒子群算法
下载PDF
基于满意度原理的光柴储微网系统优化运行研究 被引量:8
19
作者 张倩 丁津津 +2 位作者 刘童 芮涛 王群京 《电力系统保护与控制》 EI CSCD 北大核心 2018年第10期88-95,共8页
围绕微网系统环保经济运行优化问题,在并网和孤岛运行状态下,建立了以分布式发电单元的发电费用、折旧费用和环境治理费用为目标,考虑微网运行约束条件的经济优化运行模型,形成多目标有约束优化问题。基于满意度原理的模糊综合判断将多... 围绕微网系统环保经济运行优化问题,在并网和孤岛运行状态下,建立了以分布式发电单元的发电费用、折旧费用和环境治理费用为目标,考虑微网运行约束条件的经济优化运行模型,形成多目标有约束优化问题。基于满意度原理的模糊综合判断将多目标转化为单目标问题。再应用全面学习粒子群算法,对微网内分布式电源的输出功率和储能装置充/放电优化求解。以包含光伏、柴油发电机、锂电池、电动汽车充电桩和负载的交直流混合微电网为具体研究对象,优化结果验证了所提模型、算法和方法的有效性。 展开更多
关键词 微网 经济运行 模糊综合评价 全面学习粒子群算法
下载PDF
基于二进制混沌粒子群算法的认知决策引擎 被引量:6
20
作者 于洋 谭学治 +2 位作者 殷聪 张闯 马琳 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第3期8-13,共6页
为了解决不同通信模式下认知无线电发射机参数合理优化的问题,提出了一种基于二进制混沌粒子群算法(BCPSO)的认知决策引擎,该引擎利用粒子群优化算法收敛速度快和混沌运动全局遍历性的特点,使认知决策在多目标优化过程中有效地摆脱了局... 为了解决不同通信模式下认知无线电发射机参数合理优化的问题,提出了一种基于二进制混沌粒子群算法(BCPSO)的认知决策引擎,该引擎利用粒子群优化算法收敛速度快和混沌运动全局遍历性的特点,使认知决策在多目标优化过程中有效地摆脱了局部极值点,提高了参数优化的精度和稳定性.基于认知正交频分复用(OFDM)系统的仿真结果表明,相对于现有认知引擎,该引擎具有平均适应度值高、对不同通信模式鲁棒性强的特点,实现了有效优化发射机参数的目的. 展开更多
关键词 认知无线电 认知决策引擎 多目标优化 二进制混沌粒子群算法
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部