We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population...We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.展开更多
The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coa...The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coating of the HTL.The lack of compatibility between the HTL’s solvent and the QD layer results in an uneven surface,which negatively impacts the overall device performance.In this work,we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent.The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V,a high maximum luminance of 105500 cd/m2,and a remarkable maximum external quantum efficiency of 13.34%.This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs.展开更多
Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be...Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be ignored,considering the fabrication of QCA devices at the molecular level where it could alter the functionality.Therefore,defects in QCA devices need to be analyzed.So far,the simulation-based displacement defect analysis has been presented in the literature,which results in an increased demand in the corresponding mathematical model.In this paper,the displacement defect analysis of the QCA main primitive,majority voter(MV),is presented and carried out both in simulation and mathematics,where the kink energy based mathematical model is applied.The results demonstrate that this model is valid for the displacement defect in QCA MV.展开更多
A switchable autostereoscopic 3-dimensional(3D) display device with wide color gamut is introduced in this paper. In conjunction with a novel directional quantum-dot(QD) backlight, the precise scanning control strateg...A switchable autostereoscopic 3-dimensional(3D) display device with wide color gamut is introduced in this paper. In conjunction with a novel directional quantum-dot(QD) backlight, the precise scanning control strategy, and the eye-tracking system, this spatial-sequential solution enables our autostereoscopic display to combine all the advantages of full resolution,wide color gamut, low crosstalk, and switchable 2D/3D. And also, we fabricated an autostereoscopic display prototype and demonstrated its performances effectively. The results indicate that our system can both break the limitation of viewing position and provide high-quality 3D images. We present two working modes in this system. In the spatial-sequential mode,the crosstalk is about 6%. In the time-multiplexed mode, the viewer should wear auxiliary and the crosstalk is about 1%,just next to that of a commercial 3D display(BENQ XL2707-B and View Sonic VX2268 WM). Additionally, our system is also completely compatible with active shutter glasses and its 3D resolution is same as its 2D resolution. Because of the excellent properties of the QD material, the color gamut can be widely extended to 77.98% according to the ITU-R recommendation BT.2020(Rec.2020).展开更多
We report on the fabrication and characterization of InAs/GaAs chirped multilayer quantum-dot superluminescent diodes(CMQD-SLDs)with and without direct Si doping in QDs.It was found that both the output power and the ...We report on the fabrication and characterization of InAs/GaAs chirped multilayer quantum-dot superluminescent diodes(CMQD-SLDs)with and without direct Si doping in QDs.It was found that both the output power and the spectral width of the CMQD-SLDs were significantly enhanced by direct Si doping in the QDs.The output power and spectral width have been increased by approximately 18.3%and 40%,respectively.Moreover,we shortened the cavity length of the doped CMQD-SLD and obtained a spectral width of 106 nm.In addition,the maximum output power and spectral width of the CMQD-SLD doped directly with Si can be further increased to 16.6 mW and 114 nm,respectively,through anti-reflection coating and device packaging.The device exhibited the smallest spectral dip of 0.2 dB when the spectrum was widest.The improved performances of the doped CMQD-SLD can be attributed to the direct doping of Si in the QDs,optimization of device structure and device packaging.展开更多
A state space model(SSM) is derived for quantum-dot semiconductor optical amplifiers(QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along ...A state space model(SSM) is derived for quantum-dot semiconductor optical amplifiers(QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along QD-SOA cavity are considered as state variables of the system.Simulations show that SSM calculates QD-SOA′s static and dynamic characteristics with high accuracy.展开更多
We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorpt...We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.展开更多
We investigate the effect of intra-dot Coulomb interaction on the Andreev reflection in a normalmetal/quantum-dot/superconductor (N-QD-S) system with multiple levels in the quantum dot, in the regime where the intra-d...We investigate the effect of intra-dot Coulomb interaction on the Andreev reflection in a normalmetal/quantum-dot/superconductor (N-QD-S) system with multiple levels in the quantum dot, in the regime where the intra-dot interacting constant is comparable to the energy gap of superconducting lead. By using nonequilibrium Green function method, the averaged occupation of electrons in the quantum dot and the Andreev reflection (AR) current are studied. Comparing to the case of non-interacting quantum dot, the system shows significant changes for the a two-step-like behavior; and the I-Vg shows two groups of peaks, separated by U and with equal heights, where Vg is the gate voltage and U denotes the intra-dot Coulomb interaction constant. (ii) For finite bias voltage, dips, superposed V ≥ U/2, extra AR current peaks occur between the two groups of the peaks. Besides, the properties of the heights of the AR current peaks are more complicated.展开更多
Two schemes of quantum secret sharing are proposed via single electron spin confined in charged QDs inside a single-sided microcavity and a double-sided microcavity, respectively. Both schemes rely on coherent photons...Two schemes of quantum secret sharing are proposed via single electron spin confined in charged QDs inside a single-sided microcavity and a double-sided microcavity, respectively. Both schemes rely on coherent photonspin interaction. The two schemes axe both deterministic and can be extended to multipartite secret sharing.展开更多
We study Andreev tunneling through a ferromagnet/quantum-dot (QD)/superconductor system. By usingnonequilibrum Green function method, the averaged occupation of electrons in QD and the Andreev tunneling currentare stu...We study Andreev tunneling through a ferromagnet/quantum-dot (QD)/superconductor system. By usingnonequilibrum Green function method, the averaged occupation of electrons in QD and the Andreev tunneling currentare studied. Comparing to the norma-metal/quantum-dot/superconductor, the system shows significant changes: (i)The averaged occupations of spin-up and spin-down electrons are not equal. (ii) With the increase of the polarizationof ferromagnetic lead, the Andreev reflection current decreases. (iii) However, even the ferromagnetic lead reaches fullpolarization, the averaged occupation of spin-down electrons is not zero. The physics of these changes is discussed.展开更多
We present an analytical result for the supercurrent across a superconductor/quantum-dot/superconductor junction. By converting the current integration into a special contour integral, we can express the current as a ...We present an analytical result for the supercurrent across a superconductor/quantum-dot/superconductor junction. By converting the current integration into a special contour integral, we can express the current as a sum of the residues of poles. These poles are real and give a natural definition of the Andreev bound states. We also use the exact result to explain some features of the supercurrent transport behavior.展开更多
If an external point charge and the movable charges of an isolated quantum-dot cellular automata (QCA) cell have the same polarity, the point charge greatly affects the polarization (P) of the cell only when it is in ...If an external point charge and the movable charges of an isolated quantum-dot cellular automata (QCA) cell have the same polarity, the point charge greatly affects the polarization (P) of the cell only when it is in a narrow band with periodically changing width. The center of the band is on a radius R circle. The ratio of R to the electric charge (q) is a constant determined by the parameters of the cell. A QCA cell can be used as charge detector based on the above phenomenon.展开更多
To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor(CMOS)technology developers.The scaling scenario is not an op...To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor(CMOS)technology developers.The scaling scenario is not an option nowadays and other technologies need to be investigated.The quantum-dot cellular automata(QCA)technology is one of the important emerging nanotechnologies that have attracted much researchers’attention in recent years.This technology has many interesting features,such as high speed,low power consumption,and small size.These features make it an appropriate alternative to the CMOS technique.This paper suggests three novel structures of XNOR gates in the QCA technology.The presented structures do not follow the conventional approaches to the logic gates design but depend on the inherent capabilities of the new technology.The proposed structures are used as the main building blocks for a single-bit comparator.The resulted circuits are simulated for the verification purpose and then compared with existing counterparts in the literature.The comparison results are encouraging to append the proposed structures to the library of QCA gates.展开更多
We report on the measurement of junction temperature of the InAs/InP(l00) quantum dot lasers working in the 1.55μm wavelength region. The measurement is based on analyzing the temperature induced mode shift of the ...We report on the measurement of junction temperature of the InAs/InP(l00) quantum dot lasers working in the 1.55μm wavelength region. The measurement is based on analyzing the temperature induced mode shift of the Fabry-Perot cavity. Under pulsed operation mode, more than 20℃ junction temperature rise is measured for the quantum-dot (QD) laser when the duty cycle is increased from 1% to 95%. For a reference quantum well laser, the junction temperature rise is obtained as only around 3℃. The large junction temperature rise might be a crucial factor to improve the performance of QD lasers.展开更多
The authors present an analysis of the fault tolerant properties and the effects of temperature on an exclusive OR (XOR) gate and a full adder device implemented using quantum-dot cellular automata (QCA) structures. A...The authors present an analysis of the fault tolerant properties and the effects of temperature on an exclusive OR (XOR) gate and a full adder device implemented using quantum-dot cellular automata (QCA) structures. A Hubbard-type Hamiltonian and the Inter-cellular Hartree approximation have been used for modeling, and a uniform random distribution has been implemented for the simulated dot displacements within cells. We have shown characteristic features of all four possible input configurations for the XOR device. The device performance degrades significantly as the magnitude of defects and the temperature increase. Our results show that the fault-tolerant characteristics of an XOR device are highly dependent on the input configurations. The input signal that travels through the wire crossing (also called a crossover) in the central part of the device weakens the signal significantly. The presence of multiple wire crossings in the full adder design has a major impact on the functionality of the device. Even at absolute zero temperature, the effect of the dot displacement defect is very significant. We have observed that the breakdown characteristic is much more pronounced in the full adder than in any other devices under investigation.展开更多
Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This pape...Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This paper demonstrates designing combinational circuits based on quantum-dot cellular automata (QCA) nanotechnology, which offers a way to implement logic and all interconnections with only one homogeneous layer of cells. In this paper, the authors have proposed a novel design of XOR gate. This model proves designing capabilities of combinational circuits that are compatible with QCA gates within nano-scale. Novel adder circuits such as half adders, full adders, which avoid the fore, mentioned noise paths, crossovers by careful clocking organization, have been proposed. Experiment results show that the performance of proposed designs is more efficient than conventional designs. The modular layouts are verified with the freely available QCA Designer tool.展开更多
Since discrete multilevel transitions of quantum-dot molecules driven by external electromagnetic fields can exhibit quantum coherence effects, such an optical characteristic can be utilized to control propagation of ...Since discrete multilevel transitions of quantum-dot molecules driven by external electromagnetic fields can exhibit quantum coherence effects, such an optical characteristic can be utilized to control propagation of electromagnetic wave through a quantum-dot molecule dielectric film. Since inner-dot tunneling in quantum-dot molecules can be controlled by a gate voltage, destructive quantum coherence among multilevel transitions in quantum-dot molecule would give rise to EIT (electromagnetically induced transparency). In this report, we shall investigate controllable on- and off-resonance tunneling effects of an incident electromagnetic wave through such a quan-tum-dot-molecule dielectric film, of which the optical response is tuned by the switchable gate voltage. We have found from the theoretical mechanism that a high gate voltage can cause the EIT phenomenon of quan-tum-dot-molecule systems, and under the condition of on-resonance light tunneling through the thin film, the probe field will propagation without loss if the probe frequency detuning is zero. By taking advantage of these effects sensitive to the tunable gate voltage, such quantum coherence would be inte-grated in certain photonic structures, and some devices such as photonic switching and transistors can be designed. Transient evolution of optical characteristics in the quantum-dot-molecule dielectric film (once the tunable gate voltage is turned on or off) is also considered in this report.展开更多
Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar c...Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar cells (QDSCs) and FbX (X = S, Se) based CQD solar cells have been achieved in recent years, and the power conversion efficiencies (PCEs) ex- ceeding 12% were reported so far. In this review, we will focus on the recent progress in CQD solar cells. We firstly summarize the advance of CQD sensitizer materials and the strategies for enhancing carrier collection efficiency in QD- SCs, including developing multi-component alloyed CQDs and core-shell structured CQDs, as well as various methods to suppress interfacial carrier recombination. Then, we discuss the device architecture development of PbX CQD based solar cells and surface/interface passivation methods to increase light absorption and carrier extraction efficiencies. Finally, a short summary, challenge, and perspective are given.展开更多
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their eff...Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system. The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux. Our results show that this system can provide an excellent spin filtering property, and a large tunnelling magnetoresistance can arise by adjusting the system parameters, which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.展开更多
基金This work was supported by the National Natural Science Foundations of China(Grant Nos.12275033,61973317,and 12274470)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(Grant No.2022JJ10070)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ30582)the Scientific Research Fund of Hunan Provincial Education Department(Grant No.20A025).
文摘We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3602703,2022YFB3606504,and 2022YFB3602903)National Natural Science Foundation of China(No.62122034)+3 种基金Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting(No.2017KSYS007)Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting(No.ZDSYS201707281632549)Shenzhen Science and Technology Program(No.JCYJ20220818100411025)Shenzhen Development and Reform Commission Project(No.XMHT20220114005)。
文摘The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coating of the HTL.The lack of compatibility between the HTL’s solvent and the QD layer results in an uneven surface,which negatively impacts the overall device performance.In this work,we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent.The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V,a high maximum luminance of 105500 cd/m2,and a remarkable maximum external quantum efficiency of 13.34%.This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs.
文摘Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be ignored,considering the fabrication of QCA devices at the molecular level where it could alter the functionality.Therefore,defects in QCA devices need to be analyzed.So far,the simulation-based displacement defect analysis has been presented in the literature,which results in an increased demand in the corresponding mathematical model.In this paper,the displacement defect analysis of the QCA main primitive,majority voter(MV),is presented and carried out both in simulation and mathematics,where the kink energy based mathematical model is applied.The results demonstrate that this model is valid for the displacement defect in QCA MV.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0401503)the R&D Plan of Jiangsu Science and Technology Department,China(Grant No.BE2016173)
文摘A switchable autostereoscopic 3-dimensional(3D) display device with wide color gamut is introduced in this paper. In conjunction with a novel directional quantum-dot(QD) backlight, the precise scanning control strategy, and the eye-tracking system, this spatial-sequential solution enables our autostereoscopic display to combine all the advantages of full resolution,wide color gamut, low crosstalk, and switchable 2D/3D. And also, we fabricated an autostereoscopic display prototype and demonstrated its performances effectively. The results indicate that our system can both break the limitation of viewing position and provide high-quality 3D images. We present two working modes in this system. In the spatial-sequential mode,the crosstalk is about 6%. In the time-multiplexed mode, the viewer should wear auxiliary and the crosstalk is about 1%,just next to that of a commercial 3D display(BENQ XL2707-B and View Sonic VX2268 WM). Additionally, our system is also completely compatible with active shutter glasses and its 3D resolution is same as its 2D resolution. Because of the excellent properties of the QD material, the color gamut can be widely extended to 77.98% according to the ITU-R recommendation BT.2020(Rec.2020).
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62035012,62074143,and 62004191)Zhejiang Lab (Grant No.2020LC0AD02)
文摘We report on the fabrication and characterization of InAs/GaAs chirped multilayer quantum-dot superluminescent diodes(CMQD-SLDs)with and without direct Si doping in QDs.It was found that both the output power and the spectral width of the CMQD-SLDs were significantly enhanced by direct Si doping in the QDs.The output power and spectral width have been increased by approximately 18.3%and 40%,respectively.Moreover,we shortened the cavity length of the doped CMQD-SLD and obtained a spectral width of 106 nm.In addition,the maximum output power and spectral width of the CMQD-SLD doped directly with Si can be further increased to 16.6 mW and 114 nm,respectively,through anti-reflection coating and device packaging.The device exhibited the smallest spectral dip of 0.2 dB when the spectrum was widest.The improved performances of the doped CMQD-SLD can be attributed to the direct doping of Si in the QDs,optimization of device structure and device packaging.
文摘A state space model(SSM) is derived for quantum-dot semiconductor optical amplifiers(QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along QD-SOA cavity are considered as state variables of the system.Simulations show that SSM calculates QD-SOA′s static and dynamic characteristics with high accuracy.
文摘We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.
基金the State Key Laboratory for Mesoscopic Physics in Peking University,国家自然科学基金
文摘We investigate the effect of intra-dot Coulomb interaction on the Andreev reflection in a normalmetal/quantum-dot/superconductor (N-QD-S) system with multiple levels in the quantum dot, in the regime where the intra-dot interacting constant is comparable to the energy gap of superconducting lead. By using nonequilibrium Green function method, the averaged occupation of electrons in the quantum dot and the Andreev reflection (AR) current are studied. Comparing to the case of non-interacting quantum dot, the system shows significant changes for the a two-step-like behavior; and the I-Vg shows two groups of peaks, separated by U and with equal heights, where Vg is the gate voltage and U denotes the intra-dot Coulomb interaction constant. (ii) For finite bias voltage, dips, superposed V ≥ U/2, extra AR current peaks occur between the two groups of the peaks. Besides, the properties of the heights of the AR current peaks are more complicated.
文摘Two schemes of quantum secret sharing are proposed via single electron spin confined in charged QDs inside a single-sided microcavity and a double-sided microcavity, respectively. Both schemes rely on coherent photonspin interaction. The two schemes axe both deterministic and can be extended to multipartite secret sharing.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10074001 and 90103027 and the State KeyLaboratory for Mesoscopic Physics in Peking University
文摘We study Andreev tunneling through a ferromagnet/quantum-dot (QD)/superconductor system. By usingnonequilibrum Green function method, the averaged occupation of electrons in QD and the Andreev tunneling currentare studied. Comparing to the norma-metal/quantum-dot/superconductor, the system shows significant changes: (i)The averaged occupations of spin-up and spin-down electrons are not equal. (ii) With the increase of the polarizationof ferromagnetic lead, the Andreev reflection current decreases. (iii) However, even the ferromagnetic lead reaches fullpolarization, the averaged occupation of spin-down electrons is not zero. The physics of these changes is discussed.
文摘We present an analytical result for the supercurrent across a superconductor/quantum-dot/superconductor junction. By converting the current integration into a special contour integral, we can express the current as a sum of the residues of poles. These poles are real and give a natural definition of the Andreev bound states. We also use the exact result to explain some features of the supercurrent transport behavior.
文摘If an external point charge and the movable charges of an isolated quantum-dot cellular automata (QCA) cell have the same polarity, the point charge greatly affects the polarization (P) of the cell only when it is in a narrow band with periodically changing width. The center of the band is on a radius R circle. The ratio of R to the electric charge (q) is a constant determined by the parameters of the cell. A QCA cell can be used as charge detector based on the above phenomenon.
文摘To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor(CMOS)technology developers.The scaling scenario is not an option nowadays and other technologies need to be investigated.The quantum-dot cellular automata(QCA)technology is one of the important emerging nanotechnologies that have attracted much researchers’attention in recent years.This technology has many interesting features,such as high speed,low power consumption,and small size.These features make it an appropriate alternative to the CMOS technique.This paper suggests three novel structures of XNOR gates in the QCA technology.The presented structures do not follow the conventional approaches to the logic gates design but depend on the inherent capabilities of the new technology.The proposed structures are used as the main building blocks for a single-bit comparator.The resulted circuits are simulated for the verification purpose and then compared with existing counterparts in the literature.The comparison results are encouraging to append the proposed structures to the library of QCA gates.
基金Supported by the National Natural Foundation of China under Grant Nos 61204058 and 61021064the Natural Foundation of Guangdong Province under Grant No S2013010011833the Foundation of Shenzhen Innovation Program under Grant No JCYJ20130401095559823
文摘We report on the measurement of junction temperature of the InAs/InP(l00) quantum dot lasers working in the 1.55μm wavelength region. The measurement is based on analyzing the temperature induced mode shift of the Fabry-Perot cavity. Under pulsed operation mode, more than 20℃ junction temperature rise is measured for the quantum-dot (QD) laser when the duty cycle is increased from 1% to 95%. For a reference quantum well laser, the junction temperature rise is obtained as only around 3℃. The large junction temperature rise might be a crucial factor to improve the performance of QD lasers.
文摘The authors present an analysis of the fault tolerant properties and the effects of temperature on an exclusive OR (XOR) gate and a full adder device implemented using quantum-dot cellular automata (QCA) structures. A Hubbard-type Hamiltonian and the Inter-cellular Hartree approximation have been used for modeling, and a uniform random distribution has been implemented for the simulated dot displacements within cells. We have shown characteristic features of all four possible input configurations for the XOR device. The device performance degrades significantly as the magnitude of defects and the temperature increase. Our results show that the fault-tolerant characteristics of an XOR device are highly dependent on the input configurations. The input signal that travels through the wire crossing (also called a crossover) in the central part of the device weakens the signal significantly. The presence of multiple wire crossings in the full adder design has a major impact on the functionality of the device. Even at absolute zero temperature, the effect of the dot displacement defect is very significant. We have observed that the breakdown characteristic is much more pronounced in the full adder than in any other devices under investigation.
文摘Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This paper demonstrates designing combinational circuits based on quantum-dot cellular automata (QCA) nanotechnology, which offers a way to implement logic and all interconnections with only one homogeneous layer of cells. In this paper, the authors have proposed a novel design of XOR gate. This model proves designing capabilities of combinational circuits that are compatible with QCA gates within nano-scale. Novel adder circuits such as half adders, full adders, which avoid the fore, mentioned noise paths, crossovers by careful clocking organization, have been proposed. Experiment results show that the performance of proposed designs is more efficient than conventional designs. The modular layouts are verified with the freely available QCA Designer tool.
文摘Since discrete multilevel transitions of quantum-dot molecules driven by external electromagnetic fields can exhibit quantum coherence effects, such an optical characteristic can be utilized to control propagation of electromagnetic wave through a quantum-dot molecule dielectric film. Since inner-dot tunneling in quantum-dot molecules can be controlled by a gate voltage, destructive quantum coherence among multilevel transitions in quantum-dot molecule would give rise to EIT (electromagnetically induced transparency). In this report, we shall investigate controllable on- and off-resonance tunneling effects of an incident electromagnetic wave through such a quan-tum-dot-molecule dielectric film, of which the optical response is tuned by the switchable gate voltage. We have found from the theoretical mechanism that a high gate voltage can cause the EIT phenomenon of quan-tum-dot-molecule systems, and under the condition of on-resonance light tunneling through the thin film, the probe field will propagation without loss if the probe frequency detuning is zero. By taking advantage of these effects sensitive to the tunable gate voltage, such quantum coherence would be inte-grated in certain photonic structures, and some devices such as photonic switching and transistors can be designed. Transient evolution of optical characteristics in the quantum-dot-molecule dielectric film (once the tunable gate voltage is turned on or off) is also considered in this report.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274134,91433205,51372270,51402348,51421002,21173260,11474333,51372272,and 51627803)the Knowledge Innovation Program of the Chinese Academy of Sciences+2 种基金the Natural Science Foundation of Beijing,China(Grant No.4173077)USTB Talent Program,China(Grant No.06500053)Fundamental Research Funds for the Central Universities,China(Grant Nos.FRF-BR-16-018A,FRF-TP-17-069A1,and 06198178)
文摘Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar cells (QDSCs) and FbX (X = S, Se) based CQD solar cells have been achieved in recent years, and the power conversion efficiencies (PCEs) ex- ceeding 12% were reported so far. In this review, we will focus on the recent progress in CQD solar cells. We firstly summarize the advance of CQD sensitizer materials and the strategies for enhancing carrier collection efficiency in QD- SCs, including developing multi-component alloyed CQDs and core-shell structured CQDs, as well as various methods to suppress interfacial carrier recombination. Then, we discuss the device architecture development of PbX CQD based solar cells and surface/interface passivation methods to increase light absorption and carrier extraction efficiencies. Finally, a short summary, challenge, and perspective are given.
文摘Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system. The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux. Our results show that this system can provide an excellent spin filtering property, and a large tunnelling magnetoresistance can arise by adjusting the system parameters, which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.