期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Quantum-inspired ant algorithm for knapsack problems 被引量:3
1
作者 Wang Honggang Ma Liang Zhang Huizhen Li Gaoya 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1012-1016,共5页
The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack prob... The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated. 展开更多
关键词 knapsack problem quantum computing ant algorithm quantum-inspired ant algorithm.
下载PDF
Enhanced minimum attribute reduction based on quantum-inspired shuffled frog leaping algorithm 被引量:3
2
作者 Weiping Ding Jiandong Wang +1 位作者 Zhijin Guan Quan Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期426-434,共9页
Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it i... Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction. 展开更多
关键词 minimum attribute reduction quantum-inspired shuf- fled frog leaping algorithm multi-state quantum bit quantum rotation gate and quantum mutation elitist frog.
下载PDF
Quantum-Inspired Neural Network with Sequence Input 被引量:1
3
作者 Ziyang Li Panchi Li 《Open Journal of Applied Sciences》 2015年第6期259-269,共11页
To enhance the approximation and generalization ability of artificial neural network (ANN) by employing the principles of quantum rotation gate and controlled-not gate, a quantum-inspired neuron with sequence input is... To enhance the approximation and generalization ability of artificial neural network (ANN) by employing the principles of quantum rotation gate and controlled-not gate, a quantum-inspired neuron with sequence input is proposed. In the proposed model, the discrete sequence input is represented by the qubits, which, as the control qubits of the controlled-not gate after being rotated by the quantum rotation gates, control the target qubit for reverse. The model output is described by the probability amplitude of state in the target qubit. Then a quantum-inspired neural network with sequence input (QNNSI) is designed by employing the sequence input-based quantum-inspired neurons to the hidden layer and the classical neurons to the output layer, and a learning algorithm is derived by employing the Levenberg-Marquardt algorithm. Simulation results of benchmark problem show that, under a certain condition, the QNNSI is obviously superior to the ANN. 展开更多
关键词 QUANTUM ROTATION GATE Multi-Qubits Controller-Not GATE quantum-inspired NEURON quantum-inspired Neural Network
下载PDF
Quantum-Inspired Neural Network with Quantum Weights and Real Weights
4
作者 Fuhua Shang 《Open Journal of Applied Sciences》 2015年第10期609-617,共9页
To enhance the approximation ability of neural networks, by introducing quantum rotation gates to the traditional BP networks, a novel quantum-inspired neural network model is proposed in this paper. In our model, the... To enhance the approximation ability of neural networks, by introducing quantum rotation gates to the traditional BP networks, a novel quantum-inspired neural network model is proposed in this paper. In our model, the hidden layer consists of quantum neurons. Each quantum neuron carries a group of quantum rotation gates which are used to update the quantum weights. Both input and output layer are composed of the traditional neurons. By employing the back propagation algorithm, the training algorithms are designed. Simulation-based experiments using two application examples of pattern recognition and function approximation, respectively, illustrate the availability of the proposed model. 展开更多
关键词 QUANTUM Computing QUANTUM ROTATION GATE quantum-inspired NEURON quantum-inspired NEURAL Network
下载PDF
NOVEL QUANTUM-INSPIRED GENETIC ALGORITHM BASED ON IMMUNITY
5
作者 LiYing ZhaoRongchun +1 位作者 ZhangYanning JiaoLicheng 《Journal of Electronics(China)》 2005年第4期371-378,共8页
A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's... A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA. 展开更多
关键词 Genetic Algorithm(GA) quantum-inspired Genetic Algorithm(QGA) Immune operator Knapsack problem
下载PDF
基于个体密集距离的多目标进化算法 被引量:23
6
作者 雷德明 吴智铭 《计算机学报》 EI CSCD 北大核心 2005年第8期1320-1326,共7页
外部种群维护和适应度赋值是多目标进化算法(MOEA)的两个重要部分,该文首先对这两个问题目前已有的处理方法进行了分析,然后提出了基于个体密集距离的外部种群维护方法,并在将所有个体根据Pareto支配关系分成四个层次的基础上,给出了一... 外部种群维护和适应度赋值是多目标进化算法(MOEA)的两个重要部分,该文首先对这两个问题目前已有的处理方法进行了分析,然后提出了基于个体密集距离的外部种群维护方法,并在将所有个体根据Pareto支配关系分成四个层次的基础上,给出了一种由个体密集距离定义的适应度函数,最后将基于个体密集距离的多目标进化算法CMOEA应用于几个常用的测试函数,并和SPEA,SPEA-2进行了比较,计算结果表明CMOEA具有良好的搜索性能. 展开更多
关键词 密集距离 维护 适应度赋值 多目标进化算法
下载PDF
面向多峰函数的自适应小生境量子进化算法 被引量:9
7
作者 陈彦龙 张培林 +1 位作者 李胜 李一宁 《系统工程与电子技术》 EI CSCD 北大核心 2014年第2期403-408,共6页
为解决量子进化算法在多峰优化时只能找到一个最优解,无法找到所有全局和局部最优解的问题,提出自适应小生境量子进化算法。利用佳点集理论初始化种群,使种群均匀分布在整个搜索空间;提出中心地形信息小生境自适应识别方法,用于自适应... 为解决量子进化算法在多峰优化时只能找到一个最优解,无法找到所有全局和局部最优解的问题,提出自适应小生境量子进化算法。利用佳点集理论初始化种群,使种群均匀分布在整个搜索空间;提出中心地形信息小生境自适应识别方法,用于自适应的识别峰值所在区域,并建立小生境完善策略,提高小生境识别速度;借助量子进化算法的快速寻优能力精确寻找各个峰值点;采用动态种群调整策略,维持种群的多样性,自适应地调节种群规模。仿真实验结果表明,该算法具有较强全局优化能力和局部优化能力,且搜索到的每个最优解都达到了理想值。 展开更多
关键词 多峰函数优化 佳点集 小生境技术 量子进化算法
下载PDF
基于实数编码量子进化算法的不规则多边形排样 被引量:7
8
作者 杨卫波 王铮 +1 位作者 王万良 张景玲 《计算机集成制造系统》 EI CSCD 北大核心 2016年第5期1235-1243,共9页
为探索更高效的二维不规则多边形排样方法,提出一种改进的实数编码量子进化算法。设计了基于临界多边形的按照排样件最低形心位置进行布局的放置策略,并建立了以最大化材料利用率为优化目标的数学模型;设计了基于排样编号序列和旋转角... 为探索更高效的二维不规则多边形排样方法,提出一种改进的实数编码量子进化算法。设计了基于临界多边形的按照排样件最低形心位置进行布局的放置策略,并建立了以最大化材料利用率为优化目标的数学模型;设计了基于排样编号序列和旋转角索引序列的实数几率幅值编码方法及解生成方式,通过量子观测操作直接生成问题解,使其解码效率较高;算法通过自适应调节方式进行量子更新,采用启发式算法生成排样序列初始种群,以保证解在时间和质量上的可行性。通过基准算例仿真和算法对比实验,验证了所提算法的可行性和有效性。 展开更多
关键词 不规则排样问题 临界多边形 启发式算法 实数编码 量子进化算法
下载PDF
基于元胞自动机演化的环网拓扑着色新算法 被引量:1
9
作者 屈志坚 刘明光 +2 位作者 刘靖 杨罡 刘铁 《电力自动化设备》 EI CSCD 北大核心 2012年第7期76-82,共7页
针对在线监测系统中网络拓扑分析受嵌套环网结构限制的问题,提出了一种新颖的元胞自动机演化算法。在构建环网拓扑的基础上,基于元胞自动机、近邻粒和演化阶等定义,推导了网络拓扑的反演分析模型,给出了自动机算法实现流程。利用新算法... 针对在线监测系统中网络拓扑分析受嵌套环网结构限制的问题,提出了一种新颖的元胞自动机演化算法。在构建环网拓扑的基础上,基于元胞自动机、近邻粒和演化阶等定义,推导了网络拓扑的反演分析模型,给出了自动机算法实现流程。利用新算法完成了3个数值实验,实验结果表明新算法能满足工程应用需求,演化阶越大,推演代数越少,对于满阶自动机,只需推演1代便达稳定。 展开更多
关键词 网络 拓扑 着色 元胞自动机 粒计算 染色 演化算法
下载PDF
EMOEA/D-DE算法在卫星有效载荷配置中的应用 被引量:1
10
作者 李晖 袁文兵 熊慕舟 《计算机应用》 CSCD 北大核心 2014年第8期2424-2428,共5页
针对卫星有效载荷配置问题,提出了一种基于差分进化分解的改进多目标优化算法(EMOEA/D-DE)的有效载荷配置模型。该模型将配置问题转化为以卫星数、卫星冗余度为目标的多目标优化问题(MOP),并采用EMOEA/D-DE进行求解。此外,针对随机均匀... 针对卫星有效载荷配置问题,提出了一种基于差分进化分解的改进多目标优化算法(EMOEA/D-DE)的有效载荷配置模型。该模型将配置问题转化为以卫星数、卫星冗余度为目标的多目标优化问题(MOP),并采用EMOEA/D-DE进行求解。此外,针对随机均匀初始化会导致种群在目标空间分布过于集中的问题,采用与优化目标相结合的随机初始化方法进行改进。实验结果表明,该模型所求解集的平均差异性在0.05以内,分布度值在0.9以上,具有较好的稳定性及分布性,且改进后的算法收敛速度提升近1倍,所求解的近似Pareto前沿相对更优。 展开更多
关键词 卫星有效载荷配置 多目标优化问题 MOEA D EMOEA D-DE 种群初始化
下载PDF
一种改进的遗传算法及其在喜树碱和三唑醇类化合物的QSAR研究中的应用
11
作者 朱杰 张万年 +3 位作者 季海涛 周有骏 朱驹 吕加国 《中国药学杂志》 CAS CSCD 北大核心 1999年第10期694-697,共4页
目的 :考察改进的遗传算法 (GA)在QSAR中的变量优选能力。方法 :用自编程的改进的GA选择变量 ,PLS方法拟合模型 ,对 7,9,10 ,11取代的喜树碱衍生物和取代苯环双三氮唑醇类抗真菌化合物两个数据组进行QSAR研究。结果 :对两个数据组分别... 目的 :考察改进的遗传算法 (GA)在QSAR中的变量优选能力。方法 :用自编程的改进的GA选择变量 ,PLS方法拟合模型 ,对 7,9,10 ,11取代的喜树碱衍生物和取代苯环双三氮唑醇类抗真菌化合物两个数据组进行QSAR研究。结果 :对两个数据组分别得到了一批较常规QSAR分析结果更优的方程。结论 :GA作为一种启发式搜索算法以其高效快速、并行性的特点尤其适合于QSAR研究 ,但因其仅以统计指标为进化依据 。 展开更多
关键词 遗传算法 进化算法 定量构效关系 喜树碱
下载PDF
一种新颖的共形阵非均匀子阵的优化算法
12
作者 齐飞林 雷国防 《现代导航》 2011年第1期35-42,共8页
提出了一种新的同时对共形阵非均匀子阵分区和子阵幅度激励进行优化的多目标进化算法,为此设计了新的多目标函数,通过在改进的强度Pareto进化算法(SPEA2)使用克隆选择算子和双交换遗传操作算子,从而提高搜索效率和收敛性,可以有... 提出了一种新的同时对共形阵非均匀子阵分区和子阵幅度激励进行优化的多目标进化算法,为此设计了新的多目标函数,通过在改进的强度Pareto进化算法(SPEA2)使用克隆选择算子和双交换遗传操作算子,从而提高搜索效率和收敛性,可以有效改善整个阵列的辐射特性。在系统仿真中,结合工程化实际应用,本文提出的MOEA算法对20×20阵列进行非均匀子阵分区和对各个子阵的幅度激励优化,仿真结果表明其天线阵列在扫描空域的峰值旁瓣电平(PSLL)以及方位和俯仰波束宽度等性能参数得到明显改善,该方法对改善整个阵列的辐射特性是有效的。 展开更多
关键词 共形阵 非均匀子阵 多目标进化算法 阵列优化
下载PDF
多目标进化算法的分布度评价方法 被引量:3
13
作者 徐建伟 黄辉先 +1 位作者 彭维 李密青 《计算机工程》 CAS CSCD 北大核心 2008年第20期208-209,212,共3页
分析现存多目标进化算法分布度评价方法的特点和不足,提出一种在新的坐标下对解集进行分布度评价的方法。该方法把直角坐标系下的解集映射到另一个基于角度的坐标下,以避免算法因收敛性不同对分布性评价造成影响,把新的坐标空间划分成... 分析现存多目标进化算法分布度评价方法的特点和不足,提出一种在新的坐标下对解集进行分布度评价的方法。该方法把直角坐标系下的解集映射到另一个基于角度的坐标下,以避免算法因收敛性不同对分布性评价造成影响,把新的坐标空间划分成若干相等的区域,利用区域内的个体数评价解集的均匀性。理论分析与实验结果证明该方法能精确地评价解集的分布情况。 展开更多
关键词 多目标进化算法 分布度评价方法 坐标变换
下载PDF
Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis 被引量:18
14
作者 Wan Zhang Min-Ping Jia +1 位作者 Lin Zhu Xiao-An Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期782-795,共14页
Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com-... Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions. 展开更多
关键词 Computational intelligence Machinerycondition monitoring Fault diagnosis Neural networkFuzzy logic Support vector machine - evolutionaryalgorithms
下载PDF
Hamming-distance-based adaptive quantum-inspired evolutionary algorithm for network coding resources optimization 被引量:10
15
作者 Qu Zhijian Liu Xiaohong +2 位作者 Zhang Xianwei Xie Yinbao Li Caihong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2015年第3期92-99,共8页
An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was... An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was taken into consideration, and a suitable rotation angle step (RAS) was assigned to each individual according to the Hamming distance. Performance comparisons were conducted among the HD-QEA, a basic quantum-inspired evolutionary algorithm (QEA) and an individual's fitness based adaptive QEA. A solid demonstration was provided that the proposed HD-QEA is better than the other two algorithms in terms of the convergence speed and the global optimization capability when they are employed to optimize the network coding resources in multicast networks. 展开更多
关键词 network coding quantum-inspired evolutionary algorithm Hamming distance multicast network
原文传递
一种基于改进的蚁群优化算法的三维空间路径搜索算法 被引量:6
16
作者 李浩宇 吕梅柏 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第4期563-568,共6页
针对传统二维平面的随机搜索算法——蚁群优化算法不能满足三维空间路径搜索以及快速性要求等问题,提出了改进的方法。基于栅格离散方法创建空间环境地图,通过引入搜索主方向、可视域及可行域等定义将搜索算法扩展至三维空间,建立了三... 针对传统二维平面的随机搜索算法——蚁群优化算法不能满足三维空间路径搜索以及快速性要求等问题,提出了改进的方法。基于栅格离散方法创建空间环境地图,通过引入搜索主方向、可视域及可行域等定义将搜索算法扩展至三维空间,建立了三维空间下的蚁群优化算模型,并给出该方法的搜索流程。而后根据此模型及流程实现了仿真程序,得到仿真结果,并与传统方法做出了分析比较,得出该改进方法具有较快的收敛速度、较好的稳定性和更高的计算效率。 展开更多
关键词 蚁群优化算 栅格法 三维搜索
下载PDF
Energy-Efficient Joint Content Caching and Small Base Station Activation Mechanism Design in Heterogeneous Cellular Networks 被引量:6
17
作者 Renchao Xie Zishu Li +1 位作者 Tao Huang Yunjie Liu 《China Communications》 SCIE CSCD 2017年第10期70-83,共14页
Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce... Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce bandwidth resource. Although many works have been done for caching in HCNs, from an energy perspective, there still exists much space to develop a more energy-efficient system when considering the fact that the majority of base stations are under-utilized in the most of the time. Therefore, in this paper, by taking the activation mechanism for the base stations into account, we study a joint caching and activation mechanism design to further improve the energy efficiency, then we formulate the optimization problem as an Integer Linear Programming problem(ILP) to maximize the system energy saving. Due to the enormous computation complexity for finding the optimal solution, we introduced a Quantum-inspired Evolutionary Algorithm(QEA) to iteratively provide the global best solution. Numerical results show that our proposed algorithm presents an excellent performance, which is far better than the strategy of only considering caching without deactivation mechanism in the actual, normal situation. We also provide performance comparison amongour QEA, random sleeping algorithm and greedy algorithm, numerical results illustrate our introduced QEA performs best in accuracy and global optimality. 展开更多
关键词 caching base station activation energy saving quantum-inspired evolutionary algorithm
下载PDF
Novel quantum-inspired firefly algorithm for optimal power quality monitor placement 被引量:1
18
作者 Ling Ai WONG Hussain SHAREEF Azah MOHAMED Ahmad Asrul IBRAHIM 《Frontiers in Energy》 SCIE CSCD 2014年第2期254-260,共7页
The application of a quantum-inspired firefly algorithm was introduced to obtain optimal power quality monitor placement in a power system. The conventional binary firefly algorithm was modified by using quantum princ... The application of a quantum-inspired firefly algorithm was introduced to obtain optimal power quality monitor placement in a power system. The conventional binary firefly algorithm was modified by using quantum principles to attain a faster convergence rate that can improve system performance and to avoid premature convergence. In the optimization process, a multi-objective function was used with the system observability constraint, which is determined via the topological monitor reach area concept. The multi-objective function comprises three functions: number of required monitors, monitor over-lapping index, and sag severity index. The effectiveness of the proposed method was verified by applying the algorithm to an IEEE 118-bus transmission system and by comparing the algorithm with others of its kind. 展开更多
关键词 quantum-inspired binary firefly algorithm topological monitor reach area power quality
原文传递
PHISHING WEB IMAGE SEGMENTATION BASED ON IMPROVING SPECTRAL CLUSTERING 被引量:1
19
作者 Li Yuancheng Zhao Liujun Jiao Runhai 《Journal of Electronics(China)》 2011年第1期101-107,共7页
This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels fro... This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels from a given image.Secondly,the data is clustered in spectral space of the similar matrix of the set points,in order to avoid the drawbacks of K-means algorithm in the conventional spectral clustering method that is sensitive to initial clustering centroids and convergence to local optimal solution,we introduce the clone operator,Cauthy mutation to enlarge the scale of clustering centers,quantum-inspired evolutionary algorithm to find the global optimal clustering centroids.Compared with phishing web image segmentation based on K-means,experimental results show that the segmentation performance of our method gains much improvement.Moreover,our method can convergence to global optimal solution and is better in accuracy of phishing web segmentation. 展开更多
关键词 Spectral clustering algorithm CLONAL MUTATION quantum-inspired Evolutionary Algorithm(QEA) Phishing web image segmentation
下载PDF
Quantum-Inspired Distributed Memetic Algorithm
20
作者 Guanghui Zhang Wenjing Ma +2 位作者 Keyi Xing Lining Xing Kesheng Wang 《Complex System Modeling and Simulation》 2022年第4期334-353,共20页
This paper proposed a novel distributed memetic evolutionary model,where four modules distributed exploration,intensified exploitation,knowledge transfer,and evolutionary restart are coevolved to maximize their streng... This paper proposed a novel distributed memetic evolutionary model,where four modules distributed exploration,intensified exploitation,knowledge transfer,and evolutionary restart are coevolved to maximize their strengths and achieve superior global optimality.Distributed exploration evolves three independent populations by heterogenous operators.Intensified exploitation evolves an external elite archive in parallel with exploration to balance global and local searches.Knowledge transfer is based on a point-ring communication topology to share successful experiences among distinct search agents.Evolutionary restart adopts an adaptive perturbation strategy to control search diversity reasonably.Quantum computation is a newly emerging technique,which has powerful computing power and parallelized ability.Therefore,this paper further fuses quantum mechanisms into the proposed evolutionary model to build a new evolutionary algorithm,referred to as quantum-inspired distributed memetic algorithm(QDMA).In QDMA,individuals are represented by the quantum characteristics and evolved by the quantum-inspired evolutionary optimizers in the quantum hyperspace.The QDMA integrates the superiorities of distributed,memetic,and quantum evolution.Computational experiments are carried out to evaluate the superior performance of QDMA.The results demonstrate the effectiveness of special designs and show that QDMA has greater superiority compared to the compared state-of-the-art algorithms based on Wilcoxon’s rank-sum test.The superiority is attributed not only to good cooperative coevolution of distributed memetic evolutionary model,but also to superior designs of each special component. 展开更多
关键词 distributed evolutionary algorithm memetic algorithm quantum-inspired evolutionary algorithm quantum distributed memetic algorithm
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部