We report that the composites of ZnO/porous Si (PS) can exhibit intensively white photoluminescence (PL) under proper excitation wavelength. The PS sample is formed by electrochemical anodization of n-type (111)...We report that the composites of ZnO/porous Si (PS) can exhibit intensively white photoluminescence (PL) under proper excitation wavelength. The PS sample is formed by electrochemical anodization of n-type (111) silicon. ZnO films are then deposited on the PS surface by pulsed laser deposition (PLD). ZnO is transparent in the visible region, so the red PL from PS can be transmitted through the ZnO films. White PL from the ZnO layer on PS can be obtained, which consists of blue-green emission from ZnO and red emission from PS. The x-ray diffraction (XRD) pattern shows that the ZnO films deposited on PS surface are non-crystalline. Due to the roughness of the PS surface, some cracks appear in the ZnO films, which could be seen from the scanning electron microscopy (SEM) images.展开更多
For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on b...For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on batch reactors, which bring uneven distribution of temperature, affecting their fluorescence properties and size uniformity. Here we designed a droplet microreactor with a temperature-controllable region, and successfully synthesized water-soluble AgInS_2 QDs. By accurately controlling temperature,we also studied how the reaction temperature affected the fluorescence properties of AgInS_2 QDs. The results showed that with the increasing of reaction temperature, the QDs size increased and the fluorescence peak constantly red-shifted along with enhanced fluorescence intensity. Based on the droplet microreactor, we could achieve more appropriate reaction condition to synthesize AgInS_2 QDs with higher fluorescence quantum yield(QY) and intensity.展开更多
基金Supported by the Natural Science Foundation of Shandong Province under Grant No Y2002A09.
文摘We report that the composites of ZnO/porous Si (PS) can exhibit intensively white photoluminescence (PL) under proper excitation wavelength. The PS sample is formed by electrochemical anodization of n-type (111) silicon. ZnO films are then deposited on the PS surface by pulsed laser deposition (PLD). ZnO is transparent in the visible region, so the red PL from PS can be transmitted through the ZnO films. White PL from the ZnO layer on PS can be obtained, which consists of blue-green emission from ZnO and red emission from PS. The x-ray diffraction (XRD) pattern shows that the ZnO films deposited on PS surface are non-crystalline. Due to the roughness of the PS surface, some cracks appear in the ZnO films, which could be seen from the scanning electron microscopy (SEM) images.
基金supported by the National Natural Science Foundation of China (Nos. 21375100, 21775111)the National Science and Technology Major Project of China (No. 2018ZX10301405)
文摘For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on batch reactors, which bring uneven distribution of temperature, affecting their fluorescence properties and size uniformity. Here we designed a droplet microreactor with a temperature-controllable region, and successfully synthesized water-soluble AgInS_2 QDs. By accurately controlling temperature,we also studied how the reaction temperature affected the fluorescence properties of AgInS_2 QDs. The results showed that with the increasing of reaction temperature, the QDs size increased and the fluorescence peak constantly red-shifted along with enhanced fluorescence intensity. Based on the droplet microreactor, we could achieve more appropriate reaction condition to synthesize AgInS_2 QDs with higher fluorescence quantum yield(QY) and intensity.