In thermal-structural testing of hypersonic materials and structures,deformation measurement on the front surface of an object directly heated by quartz lamps is highly necessary and very challenging.This work describ...In thermal-structural testing of hypersonic materials and structures,deformation measurement on the front surface of an object directly heated by quartz lamps is highly necessary and very challenging.This work describes a novel front-surface high-temperature deformation measurement technique,which adopts ultraviolet 3D digital image correlation(UV 3D-DIC)to observe and measure the high-temperature deformation fields on front surfaces directly heated by quartz lamps.Compared with existing blue light DIC techniques,the established UV 3D-DIC,which combines UV CCD camera,active UV illumination and bandpass filter imaging,can effectively suppress the strong disturbing light emitted by the quartz lamps and the heated sample itself during heating process.Two experiments were carried out to verify the robustness and accuracy of the developed technique:(1)direct observation of front surfaces of a hypersonic thermal structure sample heated from room temperature to 1050℃,and(2)front-surface thermal stain and coefficient of thermal expansion(CTE)measurement of an Inconel 718 sample up to 800℃.The well matched strain and CTE results with literature data show that UV 3D-DIC system is an effective technique for front-surface deformation measurement and has great potential in characterizing deformation response of hypersonic materials and structures subjected to transient aerodynamic heating.展开更多
The effect of a quartz plate (window) on the silicon wafer temperature is studied in the conditions of the combined thermal transfer in a lamp-based chamber for the rapid thermal treatment (RTP) set up. The chamber fo...The effect of a quartz plate (window) on the silicon wafer temperature is studied in the conditions of the combined thermal transfer in a lamp-based chamber for the rapid thermal treatment (RTP) set up. The chamber for RTP is simulated by a radiative-closed thermal system including the influence of quartz window as a spectral filter of lamp emission and a source of emitted thermal radiation. Energy equations for thermal fluxes involved in the heat input and output from the working wafer and quartz window are solved in spectral approximation. The transfer characteristics that are defined by the temperature dependencies of the silicon wafer and the quartz window on the temperature of the heater are accounted. It is shown that temperature bistability in the silicon wafer initiates an induced bistability into the quartz window that does not reveal bistable behavior because of the linear temperature dependence of its total optical characteristics. A possibility for simulation of the quartz window by spectral restriction of the heater radiation is confirmed. The availability of the weak bistable effect in the mode of zero effective heat exchange coefficient of a non-radiative component of the thermal flux removed from the working wafer has been obtained.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11602011,11872009,and 11632010)the National S&T Major Project of China(No.ZX069)+1 种基金the Aeronautical Science Foundation of China(No.2016ZD51034)the Postdoctoral Science Foundation of China(No.2017M610029)。
文摘In thermal-structural testing of hypersonic materials and structures,deformation measurement on the front surface of an object directly heated by quartz lamps is highly necessary and very challenging.This work describes a novel front-surface high-temperature deformation measurement technique,which adopts ultraviolet 3D digital image correlation(UV 3D-DIC)to observe and measure the high-temperature deformation fields on front surfaces directly heated by quartz lamps.Compared with existing blue light DIC techniques,the established UV 3D-DIC,which combines UV CCD camera,active UV illumination and bandpass filter imaging,can effectively suppress the strong disturbing light emitted by the quartz lamps and the heated sample itself during heating process.Two experiments were carried out to verify the robustness and accuracy of the developed technique:(1)direct observation of front surfaces of a hypersonic thermal structure sample heated from room temperature to 1050℃,and(2)front-surface thermal stain and coefficient of thermal expansion(CTE)measurement of an Inconel 718 sample up to 800℃.The well matched strain and CTE results with literature data show that UV 3D-DIC system is an effective technique for front-surface deformation measurement and has great potential in characterizing deformation response of hypersonic materials and structures subjected to transient aerodynamic heating.
文摘The effect of a quartz plate (window) on the silicon wafer temperature is studied in the conditions of the combined thermal transfer in a lamp-based chamber for the rapid thermal treatment (RTP) set up. The chamber for RTP is simulated by a radiative-closed thermal system including the influence of quartz window as a spectral filter of lamp emission and a source of emitted thermal radiation. Energy equations for thermal fluxes involved in the heat input and output from the working wafer and quartz window are solved in spectral approximation. The transfer characteristics that are defined by the temperature dependencies of the silicon wafer and the quartz window on the temperature of the heater are accounted. It is shown that temperature bistability in the silicon wafer initiates an induced bistability into the quartz window that does not reveal bistable behavior because of the linear temperature dependence of its total optical characteristics. A possibility for simulation of the quartz window by spectral restriction of the heater radiation is confirmed. The availability of the weak bistable effect in the mode of zero effective heat exchange coefficient of a non-radiative component of the thermal flux removed from the working wafer has been obtained.