The iron and manganese absorption properties of several filter media were studied. Four plain filter media and six surface-modified media were examined. The surface modification was performed using potassium permangan...The iron and manganese absorption properties of several filter media were studied. Four plain filter media and six surface-modified media were examined. The surface modification was performed using potassium permanganate as a surface treatment. The surface-modified manganese sand was found to be most efficient at removing iron and manganese from water. The metal concentrations in filtered effluent were between 0.01 and 0.04 mg/L, which is far lower than the standard for recycle water. A concen-tration of 5% KMnO4 was found to be most effective as surface modifier. The surface of the manganese sand modified by 5% KMnO4 was examined and found to be covered with a dense membrane of some compound. The membrane had the advantages of uniform texture, large surface area and physical and chemical stability. It was effective at removing iron and manganese from mine water.展开更多
The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a t...The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward,reliable and reproducible methodology that can identify representative sandy soil texture parameters.The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit(BS) have a greater degree of roundness and a smoother surface texture than river sands(RS). The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.展开更多
Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this...Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this paper, the adsorption property of the MDFF agent, MD-1, on quartz sand has been studied through adsorption experiments at different pH and temperatures. Experimental data are also analyzed kinetically and thermodynamically. The results show that the adsorption of MD-1 on quartz sand takes place mainly because of electrostatic interactions, which corresponds to adsorption that increases with pH. Kinetic analyses show that at a higher pH the activation energy for adsorption gets lower and, therefore, the adsorption becomes quicker for MD-1 on quartz sand. Thermodynamic analyses show that pH plays an important role in the adsorption of MD-1 on quartz sand. At a higher pH, more negative surface charges result in the increase of electrostatic interactions between MD-1 and quartz sand. Therefore, the saturated adsorption amount increases and more adsorption heat will be released.展开更多
Effects of pH and ionic strength on ciprofloxacin adsorption in quartz sand were studied through a batch equilibrium adsorption experiment in this paper. The experimental data were fitted by empirical formulas from La...Effects of pH and ionic strength on ciprofloxacin adsorption in quartz sand were studied through a batch equilibrium adsorption experiment in this paper. The experimental data were fitted by empirical formulas from Langmuir and Freundlich adsorption isothermal curves, and the transport experiments in quartz sand at different pH and ionic strength were conducted to investigate the transport characteristics of ciprofloxacin. It was found that with the increase of pH value or ionic strength, adsorption capacity of ciprofloxacin decreased, so that it could move easier. The results indicated that low pH or ionic strength was conductive to the adsorption of ciprofloxacin in quartz sand. Meanwhile, a higher initial concentration or stronger ionic strength could result in a smaller linear distribution coefficient of ciprofloxacin, which meant a low adsorption capacity. According to the fitting results, the adsorption of ciprofloxacin in quartz sand could be described well by both Langmuir and Freundlich equations, of which Freundlich equation had a better efficacy.展开更多
This pilot study attempts to demonstrate some underlying scanning electron microscopy themes of quartz grain surface textures. A variety of textural patterns and individual features are described for grains selected f...This pilot study attempts to demonstrate some underlying scanning electron microscopy themes of quartz grain surface textures. A variety of textural patterns and individual features are described for grains selected from various littoral environments. An attempt was made to differentiate samples on surface textures alone, but limitations of using this technique in sedimentological isolation were apparent. Statistical analysis of checklist data and photographic evidence revealed some of the more important feature combinations used in environmental diagnosis. The use of discriminant analysis provided quantitative sample separation.展开更多
Silica is becoming more attractive as plant nutrient for non-graminae crops particularly in relation with drought-stress tolerant. Many efforts have been conducted to obtain an efficient technique to produce silica fe...Silica is becoming more attractive as plant nutrient for non-graminae crops particularly in relation with drought-stress tolerant. Many efforts have been conducted to obtain an efficient technique to produce silica fertilizer worldwide, but the results are varying considerably due to various factors including raw material and extraction technique. This study was carried out to develop an efficient extraction technique for ortho-silicic acid (OSA-H4SiO4) from a Bangka-Belitung quartz sand by employing acid-base dissolution method. A 325-mesh size quartz sand was boiled in HCl solution at various concentrations. The optimum concentration was then used in the following experiment at several different volumes of solution. The sand obtained from optimum concentration and volume of HCl solution was then reacted with different amounts of NaOH (s), and heated until a wet mixture was obtained. As a reference the best extraction conditions were applied to a natural zeolite sample. All OSA analyses were done in triplicates with spectrophotometric method. Supporting evidences were collected from x-ray diffraction and scanning-electron-microscopy analyses of the treated samples. The yield of quartz sand-originated OSA was 183 g·kg-1 and significantly increased linearly with increasing weight of NaOH (R2 = 0.99**), whereas that from zeolite was only 104.2 g·kg-1 at 80 g NaOH. XRD and SEM data confirmed the evidences that the acid-base extraction disrupted the quartz mineral structure and as a consequence releasing more water soluble OSA.展开更多
Hydroquinone (HQ) is the most important hydroxy aromatic compound which is produced on a large scale. Understanding its fate in the environment is therefore of primary importance to prevent its migration in the soil a...Hydroquinone (HQ) is the most important hydroxy aromatic compound which is produced on a large scale. Understanding its fate in the environment is therefore of primary importance to prevent its migration in the soil and/or the contamination of the aquatic ecosystems. Here we present a column based method to investigate the physicochemical processes controlling the removal from the aqueous phase and the adsorption onto natural quartz sand (NQS), of organic pollutant such as HQ molecules. We will focus on the interactions that occur between the organic pollutant and the NQS substrate. Thus, column reactors filled with NQS were used to investigate the influence of physicochemical parameters such as the ionic strength, the pH, the flow rate, and the nature of the electrolyte cation, on the HQ adsorption from water onto NQS substrate. The data indicate that, when divalent instead of monovalent cations, are present in the effluent water injection phase, and/or when the ionic strength of the effluent increases, the adsorbed HQ amount decreases. Similar decrease of the adsorbed HQ amount was also observed, at constant ionic strength, by increasing either, the pH from 3 to 9, the flow rate Q from 1 to 3 ml·mn-1, or by decreasing the HQ initial concentration, C0 from 30 to 6 mg·L-1. Further, large amount of the organic pollutant (up to 93 wt% of HQ molecules) was removed from the effluent water phase by using NQS column. The overall data seem to indicate that the adsorption of HQ molecules on the NQS surface is mainly controlled by electrostatic interaction forces occurring between the organic molecule polar groups and the inorganic matrix silanol groups.展开更多
Aeolian sand sample from Tengger desert, located in the southern part of Inner Mongolia (China) was characterized for major elemental composition and mineralogy by EPMA, XRF and XRD methods. The objective of this rese...Aeolian sand sample from Tengger desert, located in the southern part of Inner Mongolia (China) was characterized for major elemental composition and mineralogy by EPMA, XRF and XRD methods. The objective of this research was to provide data which would be a guide to aid future beneficiation of this sand, especially for the economic exploitation of feldspar and quartz which have a wide range of applications in various industries like plastic, paint, ceramics and glass industries. The elemental analysis of the sample was carried out by X-ray fluorescence spectrometer and chemical analysis while the minerals present were identified by an X-ray diffraction analyzer. The sand was discovered to contain basically SiO2 (82.43%), Al2O3 (7.68%), Na2O + K2O (4.37%) and TiO2 and Fe2O3 as the main impurities. It was also discovered that grinding of the sand is required to enhance the liberation of the minerals and the separation methods recommended are magnetic separation and flotation. It was therefore concluded that aeolian sand is a suitable source of quartz and feldspar for use in the industry.展开更多
In an effort to explore the use of natural resources, stoneware ceramics have been made using iron sand as a filler to replace quartz Kalimantan. The results showed that iron sand can be well used in making stoneware ...In an effort to explore the use of natural resources, stoneware ceramics have been made using iron sand as a filler to replace quartz Kalimantan. The results showed that iron sand can be well used in making stoneware ceramics. This is shown by the measurement of water absorption which is less than 5% and has compressive strength slightly smaller compared to stoneware ceramics made with quartz as a filler.展开更多
This paper aims to develop a modified animal glue sand binder for foundry casting with improved water resistance and bonding strength.An efficient method is reported by using sodium hydroxide as the catalyst to improv...This paper aims to develop a modified animal glue sand binder for foundry casting with improved water resistance and bonding strength.An efficient method is reported by using sodium hydroxide as the catalyst to improve the operability of animal glue binder and allyl glycidyl ether as the modifier to improve the water resistance and bonding strength.Sand specimens prepared using allyl glycidyl ether-modified animal glue binder were cured by compressed air at room temperature.The proposed method saves energy and is environmentally friendly and inexpensive.Compared with unmodified animal glue binder,standard dog bone sand specimens with allyl glycidyl ether-modified animal glue binder had higher tensile strength of 2.58 MPa,flowability of 1.95 g,better water resistance(a lower decrease in tensile strength at 25°C and relative humidity of 60%),and good collapsibility.This allyl glycidyl ether-modified animal glue binder is suitable for practical application in the foundry industry.展开更多
Thallium contamination in water can cause great danger to the environment.In this study,we synthesized manganese oxide-coated sand(MOCS)and investigated the transport and retention behaviors of Tl(I)in MOCS under diff...Thallium contamination in water can cause great danger to the environment.In this study,we synthesized manganese oxide-coated sand(MOCS)and investigated the transport and retention behaviors of Tl(I)in MOCS under different conditions.Characterization methods combined with a two-site nonequilibrium transport model were applied to explore the retentionmechanisms.The results showed that Tl(I)mobility was strongly inhibited in MOCS media,and the retention capacity calculated from the fitted model was 510.41 mg/g under neutral conditions.The retention process included adsorption and oxidative precipitation by the manganese oxides coated on the sand surface.Cotransport with the same concentration of Mn(II)led to halving Tl(I)retention due to competition for reactive sites.Enhanced Tl(I)retention was observed under alkaline conditions,as increasing pH promoted electronegativity on the media surface.Moreover,the competitive cation Ca^(2+)significantly weakened Tl(I)retention by occupying adsorption sites.These findings provide new insights into understanding Tl(I)transport behavior in water-saturated porous media and suggest that manganese oxide-coated sand can be a cost-effective filter media for treating Tl-contaminated water.展开更多
Alteration of technological and optical states of glass activated with chloride ions, entered to the surface of quartz sand and quartz grain by way of sodium chloride was investigated in the article. Concentration opt...Alteration of technological and optical states of glass activated with chloride ions, entered to the surface of quartz sand and quartz grain by way of sodium chloride was investigated in the article. Concentration optimum of activating agent was determined.展开更多
基金provided by the National Hi-tech Research and Development Program of China (No.2008AA06z305)the National Natural Science Foundation of China (No.50678172)the Science and Technology Research Program of the Ministry of Education of China (No.107022)
文摘The iron and manganese absorption properties of several filter media were studied. Four plain filter media and six surface-modified media were examined. The surface modification was performed using potassium permanganate as a surface treatment. The surface-modified manganese sand was found to be most efficient at removing iron and manganese from water. The metal concentrations in filtered effluent were between 0.01 and 0.04 mg/L, which is far lower than the standard for recycle water. A concen-tration of 5% KMnO4 was found to be most effective as surface modifier. The surface of the manganese sand modified by 5% KMnO4 was examined and found to be covered with a dense membrane of some compound. The membrane had the advantages of uniform texture, large surface area and physical and chemical stability. It was effective at removing iron and manganese from mine water.
文摘The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward,reliable and reproducible methodology that can identify representative sandy soil texture parameters.The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit(BS) have a greater degree of roundness and a smoother surface texture than river sands(RS). The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.
文摘Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this paper, the adsorption property of the MDFF agent, MD-1, on quartz sand has been studied through adsorption experiments at different pH and temperatures. Experimental data are also analyzed kinetically and thermodynamically. The results show that the adsorption of MD-1 on quartz sand takes place mainly because of electrostatic interactions, which corresponds to adsorption that increases with pH. Kinetic analyses show that at a higher pH the activation energy for adsorption gets lower and, therefore, the adsorption becomes quicker for MD-1 on quartz sand. Thermodynamic analyses show that pH plays an important role in the adsorption of MD-1 on quartz sand. At a higher pH, more negative surface charges result in the increase of electrostatic interactions between MD-1 and quartz sand. Therefore, the saturated adsorption amount increases and more adsorption heat will be released.
文摘Effects of pH and ionic strength on ciprofloxacin adsorption in quartz sand were studied through a batch equilibrium adsorption experiment in this paper. The experimental data were fitted by empirical formulas from Langmuir and Freundlich adsorption isothermal curves, and the transport experiments in quartz sand at different pH and ionic strength were conducted to investigate the transport characteristics of ciprofloxacin. It was found that with the increase of pH value or ionic strength, adsorption capacity of ciprofloxacin decreased, so that it could move easier. The results indicated that low pH or ionic strength was conductive to the adsorption of ciprofloxacin in quartz sand. Meanwhile, a higher initial concentration or stronger ionic strength could result in a smaller linear distribution coefficient of ciprofloxacin, which meant a low adsorption capacity. According to the fitting results, the adsorption of ciprofloxacin in quartz sand could be described well by both Langmuir and Freundlich equations, of which Freundlich equation had a better efficacy.
文摘This pilot study attempts to demonstrate some underlying scanning electron microscopy themes of quartz grain surface textures. A variety of textural patterns and individual features are described for grains selected from various littoral environments. An attempt was made to differentiate samples on surface textures alone, but limitations of using this technique in sedimentological isolation were apparent. Statistical analysis of checklist data and photographic evidence revealed some of the more important feature combinations used in environmental diagnosis. The use of discriminant analysis provided quantitative sample separation.
文摘Silica is becoming more attractive as plant nutrient for non-graminae crops particularly in relation with drought-stress tolerant. Many efforts have been conducted to obtain an efficient technique to produce silica fertilizer worldwide, but the results are varying considerably due to various factors including raw material and extraction technique. This study was carried out to develop an efficient extraction technique for ortho-silicic acid (OSA-H4SiO4) from a Bangka-Belitung quartz sand by employing acid-base dissolution method. A 325-mesh size quartz sand was boiled in HCl solution at various concentrations. The optimum concentration was then used in the following experiment at several different volumes of solution. The sand obtained from optimum concentration and volume of HCl solution was then reacted with different amounts of NaOH (s), and heated until a wet mixture was obtained. As a reference the best extraction conditions were applied to a natural zeolite sample. All OSA analyses were done in triplicates with spectrophotometric method. Supporting evidences were collected from x-ray diffraction and scanning-electron-microscopy analyses of the treated samples. The yield of quartz sand-originated OSA was 183 g·kg-1 and significantly increased linearly with increasing weight of NaOH (R2 = 0.99**), whereas that from zeolite was only 104.2 g·kg-1 at 80 g NaOH. XRD and SEM data confirmed the evidences that the acid-base extraction disrupted the quartz mineral structure and as a consequence releasing more water soluble OSA.
文摘Hydroquinone (HQ) is the most important hydroxy aromatic compound which is produced on a large scale. Understanding its fate in the environment is therefore of primary importance to prevent its migration in the soil and/or the contamination of the aquatic ecosystems. Here we present a column based method to investigate the physicochemical processes controlling the removal from the aqueous phase and the adsorption onto natural quartz sand (NQS), of organic pollutant such as HQ molecules. We will focus on the interactions that occur between the organic pollutant and the NQS substrate. Thus, column reactors filled with NQS were used to investigate the influence of physicochemical parameters such as the ionic strength, the pH, the flow rate, and the nature of the electrolyte cation, on the HQ adsorption from water onto NQS substrate. The data indicate that, when divalent instead of monovalent cations, are present in the effluent water injection phase, and/or when the ionic strength of the effluent increases, the adsorbed HQ amount decreases. Similar decrease of the adsorbed HQ amount was also observed, at constant ionic strength, by increasing either, the pH from 3 to 9, the flow rate Q from 1 to 3 ml·mn-1, or by decreasing the HQ initial concentration, C0 from 30 to 6 mg·L-1. Further, large amount of the organic pollutant (up to 93 wt% of HQ molecules) was removed from the effluent water phase by using NQS column. The overall data seem to indicate that the adsorption of HQ molecules on the NQS surface is mainly controlled by electrostatic interaction forces occurring between the organic molecule polar groups and the inorganic matrix silanol groups.
文摘Aeolian sand sample from Tengger desert, located in the southern part of Inner Mongolia (China) was characterized for major elemental composition and mineralogy by EPMA, XRF and XRD methods. The objective of this research was to provide data which would be a guide to aid future beneficiation of this sand, especially for the economic exploitation of feldspar and quartz which have a wide range of applications in various industries like plastic, paint, ceramics and glass industries. The elemental analysis of the sample was carried out by X-ray fluorescence spectrometer and chemical analysis while the minerals present were identified by an X-ray diffraction analyzer. The sand was discovered to contain basically SiO2 (82.43%), Al2O3 (7.68%), Na2O + K2O (4.37%) and TiO2 and Fe2O3 as the main impurities. It was also discovered that grinding of the sand is required to enhance the liberation of the minerals and the separation methods recommended are magnetic separation and flotation. It was therefore concluded that aeolian sand is a suitable source of quartz and feldspar for use in the industry.
文摘In an effort to explore the use of natural resources, stoneware ceramics have been made using iron sand as a filler to replace quartz Kalimantan. The results showed that iron sand can be well used in making stoneware ceramics. This is shown by the measurement of water absorption which is less than 5% and has compressive strength slightly smaller compared to stoneware ceramics made with quartz as a filler.
基金This work was supported by Chongqing Science and Technology Commission(cstc2017shmsA90014)Fundamental Research Funds for the Central Universities(XDJK2019AA003)We thank Kathryn Sole,PhD,from Liwen Bianji,Edanz Group China(www.liwenbianji.cn/ac),for editing the English text of a draft of this manuscript.
文摘This paper aims to develop a modified animal glue sand binder for foundry casting with improved water resistance and bonding strength.An efficient method is reported by using sodium hydroxide as the catalyst to improve the operability of animal glue binder and allyl glycidyl ether as the modifier to improve the water resistance and bonding strength.Sand specimens prepared using allyl glycidyl ether-modified animal glue binder were cured by compressed air at room temperature.The proposed method saves energy and is environmentally friendly and inexpensive.Compared with unmodified animal glue binder,standard dog bone sand specimens with allyl glycidyl ether-modified animal glue binder had higher tensile strength of 2.58 MPa,flowability of 1.95 g,better water resistance(a lower decrease in tensile strength at 25°C and relative humidity of 60%),and good collapsibility.This allyl glycidyl ether-modified animal glue binder is suitable for practical application in the foundry industry.
基金This work was supported by the National Natural Science Foundation of China(Nos.51878092 and 52070029)。
文摘Thallium contamination in water can cause great danger to the environment.In this study,we synthesized manganese oxide-coated sand(MOCS)and investigated the transport and retention behaviors of Tl(I)in MOCS under different conditions.Characterization methods combined with a two-site nonequilibrium transport model were applied to explore the retentionmechanisms.The results showed that Tl(I)mobility was strongly inhibited in MOCS media,and the retention capacity calculated from the fitted model was 510.41 mg/g under neutral conditions.The retention process included adsorption and oxidative precipitation by the manganese oxides coated on the sand surface.Cotransport with the same concentration of Mn(II)led to halving Tl(I)retention due to competition for reactive sites.Enhanced Tl(I)retention was observed under alkaline conditions,as increasing pH promoted electronegativity on the media surface.Moreover,the competitive cation Ca^(2+)significantly weakened Tl(I)retention by occupying adsorption sites.These findings provide new insights into understanding Tl(I)transport behavior in water-saturated porous media and suggest that manganese oxide-coated sand can be a cost-effective filter media for treating Tl-contaminated water.
文摘Alteration of technological and optical states of glass activated with chloride ions, entered to the surface of quartz sand and quartz grain by way of sodium chloride was investigated in the article. Concentration optimum of activating agent was determined.