期刊文献+
共找到471篇文章
< 1 2 24 >
每页显示 20 50 100
3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods 被引量:8
1
作者 Cao Xiao-Yue Yin Chang-Chun +3 位作者 Zhang Bo Huang Xin Liu Yun-He Cai Jing 《Applied Geophysics》 SCIE CSCD 2018年第3期556-565,共10页
Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured... Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures. 展开更多
关键词 Magnetotelluric(MT) 3D inversion UNSTRUCTURED fi nite-element method quasi-newton method L-BFGS
下载PDF
GLOBAL COVERGENCE OF THE NON-QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMIZATION PROBLEMS 被引量:6
2
作者 Liu Hongwei Wang Mingjie +1 位作者 Li Jinshan Zhang Xiangsun 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第3期276-288,共13页
In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the ... In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient. 展开更多
关键词 non-quasi-newton method inexact line search global convergence unconstrained optimization superlinear convergence.
下载PDF
FPGA-based Acceleration of Davidon-Fletcher-Powell Quasi-Newton Optimization Method 被引量:2
3
作者 Liu Qiang Sang Ruoyu Zhang Qijun 《Transactions of Tianjin University》 EI CAS 2016年第5期381-387,共7页
Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are comp... Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation. 展开更多
关键词 quasi-newton method hardware ACCELERATION field PROGRAMMABLE gate array
下载PDF
Quasi-Newton Method for Optimal Blank Allowance Balancing
4
作者 CHEN Manyi School of Mechatronic Engineering,Wuhan University of Technology,Wuhan 430070,China 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期858-860,共3页
A balancing technique for casting or forging parts to be machined is presented in this paper.It allows an optimal part setup to make sure that no shortage of material(undercut)will occur during machining.Particularly ... A balancing technique for casting or forging parts to be machined is presented in this paper.It allows an optimal part setup to make sure that no shortage of material(undercut)will occur during machining.Particularly in the heavy part in- dustry,where the resulting casting size and shape may deviate from expectations,the balancing process discovers whether or not the design model is totally enclosed in the actual part to be machined.The alignment is an iterative process involving nonlinear con- strained optimization,which forces data points to lie outside the nominal model under a specific order of priority.Newton methods for non-linear numerical minimization are rarely applied to this problem because of the high cost of computing.In this paper, Newton methods are applied to the balancing of blank part.The aforesaid algorithm is demonstrated in term of a marine propeller blade,and result shows that The Newton methods are more efficient and accurate than those implemented in past research and have distinct advantages compared to the registration methods widely used today. 展开更多
关键词 BLANK PART quasi-newton method ALLOWANCE balancing
下载PDF
OPTIMAL MOTION PLANNING FOR A RIGID SPACECRAFT WITH TWO MOMENTUM WHEELS USING QUASI-NEWTON METHOD
5
作者 Ge Xinsheng Zhang Qizhi Chen Li-Qun 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第4期334-340,共7页
An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors... An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors and the constraints on states. The motion planning for determining control inputs to minimize the cost functional is formulated as a nonlinear optimal control problem. Using the control parametrization, one can transform the infinite dimensional optimal control problem to a finite dimensional one that is solved via the quasi-Newton methods for a feasible trajectory which satisfies the nonholonomic constraint. The optimal motion planning scheme was applied to a rigid spacecraft with two momentum wheels. The simulation results show the effectiveness of the proposed optimal motion planning scheme. 展开更多
关键词 rigid spacecraft nonholonomic constraint motion planning quasi-newton method
下载PDF
An Improved Quasi-Newton Method for Unconstrained Optimization
6
作者 Fei Pusheng Chen Zhong (Department of Mathematics, Wuhan University, Wuhan 430072, China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第1期35-37,共3页
We present an improved method. If we assume that the objective function is twice continuously differentiable and uniformly convex, we discuss global and superlinear convergence of the improved quasi-Newton method.
关键词 quasi-newton method superlinear convergence unconstrained optimization
下载PDF
A Study of BCI Signal Pattern Recognition by Using Quasi-Newton-SVM Method
7
作者 YANG Chang-chun MA Zheng-hua SUN Yu-qiang ZOU Ling 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第4期171-177,共7页
The recognition of electroencephalogram (EEG) signals is the key of brain computer interface (BCI). Aimed at the problem that the recognition rate of EEG by using support vector machine (SVM) is low in BCI, based on t... The recognition of electroencephalogram (EEG) signals is the key of brain computer interface (BCI). Aimed at the problem that the recognition rate of EEG by using support vector machine (SVM) is low in BCI, based on the assumption that a well-defined physiological signal which also has a smooth form "hides" inside the noisy EEG signal, a Quasi-Newton-SVM recognition method based on Quasi-Newton method and SVM algorithm was presented. Firstly, the EEG signals were preprocessed by Quasi-Newton method and got the signals which were fit for SVM. Secondly, the preprocessed signals were classified by SVM method. The present simulation results indicated the Quasi-Newton-SVM approach improved the recognition rate compared with using SVM method; we also discussed the relationship between the artificial smooth signals and the classification errors. 展开更多
关键词 Brain-computer interface (BCI) EEG Support VECTOR machine (SVM) quasi-newton method
下载PDF
Rapid Springback Compensation for Age Forming Based on Quasi Newton Method 被引量:3
8
作者 XIONG Wei GAN Zhong +1 位作者 XIONG Shipeng XIA Yushan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期551-557,共7页
Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improv... Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming. 展开更多
关键词 age forming quasi newton method springback compensation mold design displacement adjustment method
下载PDF
BFGS quasi-Newton location algorithm using TDOAs and GROAs 被引量:6
9
作者 Benjian Hao Zan Li State 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期341-348,共8页
With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an effi... With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources. 展开更多
关键词 time difference of arrival (TDOA) gain ratio of arrival (GROA) source location Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-newton method.
下载PDF
A Switching Algorithm Based on Modified Quasi-Newton Equation
10
作者 Yueting Yan Chengxian Xu 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2006年第3期257-267,共11页
In this paper, a switching method for unconstrained minimization is proposed. The method is based on the modified BFGS method and the modified SR1 method. The eigenvalues and condition numbers of both the modified upd... In this paper, a switching method for unconstrained minimization is proposed. The method is based on the modified BFGS method and the modified SR1 method. The eigenvalues and condition numbers of both the modified updates are evaluated and used in the switching rule. When the condition number of the modified SR1 update is superior to the modified BFGS update, the step in the proposed quasi-Newton method is the modified SR1 step. Otherwise the step is the modified BFGS step. The efficiency of the proposed method is tested by numerical experiments on small, medium and large scale optimization. The numerical results are reported and analyzed to show the superiority of the proposed method. 展开更多
关键词 半牛顿方程 SR1方法 BFGS方法 大系统最优化 开关算法
下载PDF
一个等式约束问题的拟Newton-信赖域型方法及其收敛性 被引量:1
11
作者 张菊亮 章祥荪 《运筹学学报》 CSCD 北大核心 2001年第4期72-80,共9页
在[1]中,Vardi提出一个信赖域方法,而收敛性证明却是在精确λ-搜索下给出的.本文在[1]的基础上提出一个新的算法-拟Newton-信赖域型算法,并证明该算法是全局收敛的.通过利用二阶修正技术去修正该算法,我们证明了该算法是局部超线性收敛的.
关键词 newton-信赖域型方法 全局收敛性 超线性收敛速度 精确罚函数 等式约束最优化
下载PDF
基于BFGS-BP神经网络岩爆分类研究
12
作者 郭文强 罗军尧 《工业安全与环保》 2023年第6期7-10,共4页
BP神经网络模型是岩爆预测中的常用模型,为了强化预测效果,选取BFGS算法对BP神经网络模型进行优化。选取应力系数σ_(θ)/σ_(c)、脆性系数σ_(c)/σ_(t)和弹性能量指数W_(et)作为预测指标,国内外46组案例作为样本库,分别建立BFGS-BP神... BP神经网络模型是岩爆预测中的常用模型,为了强化预测效果,选取BFGS算法对BP神经网络模型进行优化。选取应力系数σ_(θ)/σ_(c)、脆性系数σ_(c)/σ_(t)和弹性能量指数W_(et)作为预测指标,国内外46组案例作为样本库,分别建立BFGS-BP神经网络模型和传统BP神经网络模型,对比验证其优化效果,将建好的模型用于锦屏二级水电站和秦岭隧道加以检验,得到一种有应用前景的机器学习预测模型。 展开更多
关键词 BFGS算法 拟牛顿法 岩爆预测 BP神经网络
下载PDF
基于拟牛顿法的深度强化学习在车联网边缘计算中的研究 被引量:1
13
作者 章坚武 芦泽韬 +1 位作者 章谦骅 詹明 《通信学报》 EI CSCD 北大核心 2024年第5期90-100,共11页
为了解决车联网中由于多任务和资源限制导致的任务卸载决策不理想的问题,提出了拟牛顿法的深度强化学习双阶段在线卸载(QNRLO)算法。该算法首先引入批归一化技术优化深度神经网络的训练过程,随后采用拟牛顿法进行优化,有效逼近最优解。... 为了解决车联网中由于多任务和资源限制导致的任务卸载决策不理想的问题,提出了拟牛顿法的深度强化学习双阶段在线卸载(QNRLO)算法。该算法首先引入批归一化技术优化深度神经网络的训练过程,随后采用拟牛顿法进行优化,有效逼近最优解。通过此双阶段优化,算法显著提升了在多任务和动态无线信道条件下的性能,提高了计算效率。通过引入拉格朗日算子和重构的对偶函数,将非凸优化问题转化为对偶函数的凸优化问题,确保算法的全局最优性。此外,算法考虑了车联网模型中的系统传输时间分配,增强了模型的实用性。与现有算法相比,所提算法显著提高了任务卸载的收敛性和稳定性,并能有效处理车联网中的任务卸载问题,具有较高的实用性和可靠性。 展开更多
关键词 车联网 任务卸载 深度强化学习 拟牛顿法
下载PDF
基于QNM-BP神经网络边坡稳定性评价研究
14
作者 向立 王嘉弋 徐兴爱 《价值工程》 2023年第30期148-150,共3页
为了对边坡稳定性进行精准评价,选取容重、粘聚力、内摩擦角、边坡角、边坡高度和孔隙压力比为评价指标,77组工程实例为样本数据,采用拟牛顿法优化BP神经网络,建立边坡稳定性的QNM-BP神经网络模型,模型评价准确率达98.70%。将建好的模... 为了对边坡稳定性进行精准评价,选取容重、粘聚力、内摩擦角、边坡角、边坡高度和孔隙压力比为评价指标,77组工程实例为样本数据,采用拟牛顿法优化BP神经网络,建立边坡稳定性的QNM-BP神经网络模型,模型评价准确率达98.70%。将建好的模型应用到夏比公路边坡中进行稳定性评价,评价结果与实际情况一致,得到一种评价准确且应用价值广泛的边坡稳定性评价方法。 展开更多
关键词 边坡稳定性 BP神经网络 拟牛顿法 模型仿真
下载PDF
基于相对拟牛顿法的自卫式欺骗干扰抑制算法
15
作者 齐美彬 赵谦 +3 位作者 徐晋 项厚宏 杨艳芳 崔国龙 《现代雷达》 CSCD 北大核心 2024年第1期66-73,共8页
自卫式欺骗干扰与目标信号高度相似,且二者的到达角完全相同,传统的主瓣干扰抑制算法难以对其进行抑制。针对该问题,文中在极化单输入多输出(PSIMO)雷达系统下,提出一种基于相对拟牛顿法的盲源分离算法。该算法利用干扰和目标的极化特... 自卫式欺骗干扰与目标信号高度相似,且二者的到达角完全相同,传统的主瓣干扰抑制算法难以对其进行抑制。针对该问题,文中在极化单输入多输出(PSIMO)雷达系统下,提出一种基于相对拟牛顿法的盲源分离算法。该算法利用干扰和目标的极化特性差异,通过构建重叠子阵结构计算出联合自相关矩阵,并采用相对拟牛顿法估计出分离矩阵,从而将目标和干扰信号分离在不同的通道上,实现干扰抑制作用。仿真实验结果表明,该算法能够有效抑制自卫式欺骗干扰,且在低信噪比(SNR)和密集干扰场景下依然具有良好的干扰抑制性能,当输入SNR为-10 dB时,输出的目标检测概率仍可以达到51.6%,拥有较强的鲁棒性。 展开更多
关键词 主瓣干扰抑制 自卫式欺骗干扰 极化差异 相对拟牛顿法 重叠子阵结构
下载PDF
废旧锂离子电池搬运机器人末端执行器设计
16
作者 张洪生 邓泽 《机械传动》 北大核心 2024年第3期93-101,共9页
为了解决废旧锂离子电池回收问题,针对回收过程中的分拣步骤,设计了一种可以承载电池质量并适应不同尺寸的机器人末端执行器。介绍了末端执行器各个机构,并针对肘杆六杆机构进行了进一步校核,建立了六杆机构的运动学模型;使用遗传-BFGS(... 为了解决废旧锂离子电池回收问题,针对回收过程中的分拣步骤,设计了一种可以承载电池质量并适应不同尺寸的机器人末端执行器。介绍了末端执行器各个机构,并针对肘杆六杆机构进行了进一步校核,建立了六杆机构的运动学模型;使用遗传-BFGS(Genetic Algorithm-BFGS,GABFGS)拟牛顿法和粒子群-BFGS(Particle Swarm Optimization-BFGS,PSO-BFGS)拟牛顿法对六杆机构的杆长及位置参数进行优化,建立了六杆机构的动力学模型,计算并仿真校核了空载所需的驱动力,以及极限条件下搬运过程的径向力。研究提供了一种六杆传动机构的新思路,可为废旧锂离子电池分拣设备的研发提供参考。 展开更多
关键词 末端执行器 六杆机构 拟牛顿法 动力学仿真
下载PDF
基于拟Newton法的并联机构位置正解 被引量:37
17
作者 耿明超 赵铁石 +2 位作者 王唱 陈宇航 何勇 《机械工程学报》 EI CAS CSCD 北大核心 2015年第9期28-36,共9页
基于Newton法的迭代搜索算法是求解并联机构位置正解的重要数值算法,但是在其每一步的迭代过程中都需要构造机构的Jacobian矩阵。在Newton法的基础上,将拟Newton法应用于并联机构的位置正解求解,该方法用当前的函数值代替Jacobian矩阵,... 基于Newton法的迭代搜索算法是求解并联机构位置正解的重要数值算法,但是在其每一步的迭代过程中都需要构造机构的Jacobian矩阵。在Newton法的基础上,将拟Newton法应用于并联机构的位置正解求解,该方法用当前的函数值代替Jacobian矩阵,能够减小每一迭代步的计算量。定义机构的虚工作空间,并分析6-RUS这一类并联机构虚工作空间受限的原因及迭代搜索算法在求解这一类机构位置正解时的局限性,提出将这一类机构的位置正解等效求解的方法。进一步分析耦合型少自由度机构虚工作空间受限的原因,采用虚设机构法和改进的Jacobian矩阵使迭代搜索算法能够适用于这一类机构。数值算例表明:相比于Newton法,拟Newton法的总迭代步数并没有明显增加,但由于每一迭代步的计算量少,计算效率明显提高,为并联机构位置正解在实时场合的应用提供了一定的理论指导;等效机构法能够扩大机构的虚工作空间,增加迭代搜索算法的适用范围。 展开更多
关键词 位置正解 newton 并联机构 虚工作空间
下载PDF
基于RSSI差分校正的最小二乘-拟牛顿定位算法 被引量:28
18
作者 程秀芝 朱达荣 +1 位作者 张申 朱广 《传感技术学报》 CAS CSCD 北大核心 2014年第1期123-127,共5页
针对无线传感器网络(WSN)中存在定位精度不足的问题,提出了一种基于RSSI差分校正的最小二乘-拟牛顿定位算法。在RSSI测距方面,首先通过信标节点的自校正定位求得误差校正系数,将该误差校正系数运用到求未知节点到信标节点的距离当中。... 针对无线传感器网络(WSN)中存在定位精度不足的问题,提出了一种基于RSSI差分校正的最小二乘-拟牛顿定位算法。在RSSI测距方面,首先通过信标节点的自校正定位求得误差校正系数,将该误差校正系数运用到求未知节点到信标节点的距离当中。在定位计算方面,该算法运用最小二乘法估计简单和拟牛顿法收敛速度快的特点,将最小二乘法计算出来的初值,用拟牛顿法对未知节点坐标进行迭代求精。通过仿真实验表明,本文提出的定位算法定位精度高,与传统的最小二乘法相比提高了近36%的精度。 展开更多
关键词 无线传感器网络 接收信号强度指示 最小二乘 拟牛顿法 差分校正
下载PDF
基于拟牛顿法的QN-BP预测爆破振动峰值速度 被引量:9
19
作者 刘博 史秀志 +3 位作者 黄宣东 武永猛 黄丹 罗佳 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第5期1427-1433,共7页
根据某露天矿台阶爆破实测数据,利用基于回归分析的经验公式和普通BP神经网络模型以及基于拟牛顿法的改进BP神经网络(QN-BP)模型对爆破振动峰值速度进行预测。两种模型的训练结果表明:QN-BP模型经过122次迭代即可收敛,训练平均误差为3.... 根据某露天矿台阶爆破实测数据,利用基于回归分析的经验公式和普通BP神经网络模型以及基于拟牛顿法的改进BP神经网络(QN-BP)模型对爆破振动峰值速度进行预测。两种模型的训练结果表明:QN-BP模型经过122次迭代即可收敛,训练平均误差为3.7%;而普通BP模型收敛需要10万次以上迭代,训练平均误差4.2%。通过QN-BP模型、BP模型和经验公式的预测结果与实测值的对比,三者的平均相对误差分别为6.05%、10.21%和23.42%。 展开更多
关键词 爆破振动 BP神经网络 拟牛顿法 预测
下载PDF
6-PRRS并联机器人正运动学求解 被引量:9
20
作者 杨永刚 赵杰 +1 位作者 刘玉斌 朱延河 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第3期731-734,共4页
采用分类神经网络形式,利用运动学逆解,通过遗传算法结合Levenberg-Marquardt训练方法,可实现机器人位置从关节变量空间到工作变量空间的非线性映射,从而求得并联机器人运动学正解估计值,然后通过拟牛顿迭代计算可求得精确解,将此方法... 采用分类神经网络形式,利用运动学逆解,通过遗传算法结合Levenberg-Marquardt训练方法,可实现机器人位置从关节变量空间到工作变量空间的非线性映射,从而求得并联机器人运动学正解估计值,然后通过拟牛顿迭代计算可求得精确解,将此方法应用于6-PRRS并联机器人,结果表明:该方法计算精度高,耗时少,可应用于并联机器人的任务空间实时控制或求解并联机器人的工作空间。 展开更多
关键词 自动控制技术 并联机器人 正运动学 神经网络 拟牛顿法 任务空间
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部