We study the quasi likelihood equation in Generalized Linear Models(GLM) with adaptive design ∑(i=1)^n xi(yi-h(x'iβ))=0, where yi is a q=vector, and xi is a p×q random matrix. Under some assumptions, i...We study the quasi likelihood equation in Generalized Linear Models(GLM) with adaptive design ∑(i=1)^n xi(yi-h(x'iβ))=0, where yi is a q=vector, and xi is a p×q random matrix. Under some assumptions, it is shown that the Quasi- Likelihood equation for the GLM has a solution which is asymptotic normal.展开更多
Quasi-likelihood nonlinear models (QLNM) include generalized linear models as a special case. Under some regularity conditions, the rate of the strong consistency of the maximum quasi-likelihood estimation (MQLE) ...Quasi-likelihood nonlinear models (QLNM) include generalized linear models as a special case. Under some regularity conditions, the rate of the strong consistency of the maximum quasi-likelihood estimation (MQLE) is obtained in QLNM. In an important case, this rate is O(n-^1/2(loglogn)^1/2), which is just the rate of LIL of partial sums for i.i.d variables, and thus cannot be improved anymore.展开更多
The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of...The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of research,some scholars find that there are some model specifications in spatial econometrics,such as spatial autoregressive(SAR)model and matrix exponential spatial specification(MESS),which cannot be nested within each other.Compared with the common SAR models,the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maximum likelihood estimation and Bayesian estimation.Meanwhile,MESS models have theoretical advantages.However,the theoretical research and application of MESS models have not been promoted vigorously.Therefore,the study of MESS model theory has practical significance.This paper studies the quasi maximum likelihood estimation for matrix exponential spatial specification(MESS)varying coefficient panel data models with fixed effects.It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymptotic normality to make a further supplement for the theoretical study of MESS model.展开更多
A modified Bates and Watts geometric framework is proposed for quasi\|likelihood nonlinear models in Euclidean inner product space.Based on the modified geometric framework,some asymptotic inference in terms of curvat...A modified Bates and Watts geometric framework is proposed for quasi\|likelihood nonlinear models in Euclidean inner product space.Based on the modified geometric framework,some asymptotic inference in terms of curvatures for quasi\|likelihood nonlinear models is studied.Several previous results for nonlinear regression models and exponential family nonlinear models etc.are extended to quasi\|likelihood nonlinear models.展开更多
Maximum entropy likelihood (MEEL) methods also known as exponential tilted empirical likelihood methods using constraints from model Laplace transforms (LT) are introduced in this paper. An estimate of overall loss of...Maximum entropy likelihood (MEEL) methods also known as exponential tilted empirical likelihood methods using constraints from model Laplace transforms (LT) are introduced in this paper. An estimate of overall loss of efficiency based on Fourier cosine series expansion of the density function is proposed to quantify the loss of efficiency when using MEEL methods. Penalty function methods are suggested for numerical implementation of the MEEL methods. The methods can easily be adapted to estimate continuous distribution with support on the real line encountered in finance by using constraints based on the model generating function instead of LT.展开更多
本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to...本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to n X_iX_i^1的最小特征值.展开更多
文摘We study the quasi likelihood equation in Generalized Linear Models(GLM) with adaptive design ∑(i=1)^n xi(yi-h(x'iβ))=0, where yi is a q=vector, and xi is a p×q random matrix. Under some assumptions, it is shown that the Quasi- Likelihood equation for the GLM has a solution which is asymptotic normal.
基金Supported by the National Natural Sciences Foundation of China (10761011)Mathematical Tianyuan Fund of National Natural Science Fundation of China(10626048)
文摘Quasi-likelihood nonlinear models (QLNM) include generalized linear models as a special case. Under some regularity conditions, the rate of the strong consistency of the maximum quasi-likelihood estimation (MQLE) is obtained in QLNM. In an important case, this rate is O(n-^1/2(loglogn)^1/2), which is just the rate of LIL of partial sums for i.i.d variables, and thus cannot be improved anymore.
基金supported by the Innovation Project of Guangxi Graduate Education(YCSW2021073).
文摘The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of research,some scholars find that there are some model specifications in spatial econometrics,such as spatial autoregressive(SAR)model and matrix exponential spatial specification(MESS),which cannot be nested within each other.Compared with the common SAR models,the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maximum likelihood estimation and Bayesian estimation.Meanwhile,MESS models have theoretical advantages.However,the theoretical research and application of MESS models have not been promoted vigorously.Therefore,the study of MESS model theory has practical significance.This paper studies the quasi maximum likelihood estimation for matrix exponential spatial specification(MESS)varying coefficient panel data models with fixed effects.It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymptotic normality to make a further supplement for the theoretical study of MESS model.
基金The project supported by NSFC!(19631040)NSFJ!(BK99002)
文摘A modified Bates and Watts geometric framework is proposed for quasi\|likelihood nonlinear models in Euclidean inner product space.Based on the modified geometric framework,some asymptotic inference in terms of curvatures for quasi\|likelihood nonlinear models is studied.Several previous results for nonlinear regression models and exponential family nonlinear models etc.are extended to quasi\|likelihood nonlinear models.
文摘Maximum entropy likelihood (MEEL) methods also known as exponential tilted empirical likelihood methods using constraints from model Laplace transforms (LT) are introduced in this paper. An estimate of overall loss of efficiency based on Fourier cosine series expansion of the density function is proposed to quantify the loss of efficiency when using MEEL methods. Penalty function methods are suggested for numerical implementation of the MEEL methods. The methods can easily be adapted to estimate continuous distribution with support on the real line encountered in finance by using constraints based on the model generating function instead of LT.
基金partly supported by National Natural Science Foundation of China and President Foundation of GUCAS.
文摘本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to n X_iX_i^1的最小特征值.