Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solv...Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.展开更多
The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propag...The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phononic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.展开更多
By constructing a new conformal mapping function, we study the surface effects on six edge nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional (1D) hexagonal piezoelectric quasicrystals under a...By constructing a new conformal mapping function, we study the surface effects on six edge nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional (1D) hexagonal piezoelectric quasicrystals under anti-plane shear. Based on the Gurtin–Murdoch surface/interface model and complex potential theory, the exact solutions of phonon field, phason field and electric field are obtained. The analytical solutions of the stress intensity factor of the phonon field, the stress intensity factor of the phason field, the electric displacement intensity factor and the energy release rate are given. The interaction effects of the nano-cracks and nano-hole on the stress intensity factor of the phonon field, the stress intensity factor of the phason field and the electric displacement intensity factor are discussed in numerical examples. It can be seen that the surface effect leads to the coupling of phonon field, phason field and electric field. With the decrease of cavity size, the influence of surface effect is more obvious.展开更多
Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal ...Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals.Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack,as well as the force on dislocation.The derivation is based on the conformal mapping method and the perturbation technique.The influences of the wedge angle and dislocation location on the image force are also discussed.The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones.展开更多
Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ...Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.展开更多
Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicry...Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicrystals with the Laue classes 6/mh and 6/mhmm. Through the introduction of two new functions φ and ψ, the original problem is reduced to the determination of Green's functions for two independent Helmholtz equations. The explicit expressions of displacement and stress fields are presented and their asymptotic behaviors are discussed. The static Green's function can be obtained by letting the circular frequency approach zero.展开更多
The explicit expression of Eshelby tensors for one-dimensional(1D) hexagonal quasicrystal composites is presented by using Green’s function method. The closed forms of Eshelby tensors in the special cases of spheroid...The explicit expression of Eshelby tensors for one-dimensional(1D) hexagonal quasicrystal composites is presented by using Green’s function method. The closed forms of Eshelby tensors in the special cases of spheroid, elliptic cylinder, ribbon-like,penny-shaped, and rod-shaped inclusions embedded in 1 D hexagonal quasicrystal matrices are given. As an application of Eshelby tensors, the analytical expressions for the effective properties of the 1 D hexagonal quasicrystal composites are derived based on the Mori-Tanaka method. The effects of the volume fraction of the inclusion on the elastic properties of the composite materials are discussed.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
Plane elasticity theory of one-dimensional hexagonal quasicrystals with point group 6 is proposed and established. As an application of this theory, one typical example of dislocation problem in the quasicrystals is i...Plane elasticity theory of one-dimensional hexagonal quasicrystals with point group 6 is proposed and established. As an application of this theory, one typical example of dislocation problem in the quasicrystals is investigated and its exact analytic solution is presented. The result obtained indicates that the stress components of (elastic) fields of a straight dislocation in the quasicrystals still first order singularity, which is the same as the (general crystals,) but are related with the Burgers vector of phason fields, which is different from the general (crystals.)展开更多
We have investigated the energy states of a one-dimensional electron gas and analyzed the temperature dependence of the density of states. It is shown that with increasing temperature due to thermal broadening of quan...We have investigated the energy states of a one-dimensional electron gas and analyzed the temperature dependence of the density of states. It is shown that with increasing temperature due to thermal broadening of quantum, levels are blurred.展开更多
Linear modes around a polaron in the quasi-one-dimensional iialogezi-bridged mixed-valence platinum compounds is studied using quasi-harmonic approximation,The additional modes,i. e.,so-called localised mode and local...Linear modes around a polaron in the quasi-one-dimensional iialogezi-bridged mixed-valence platinum compounds is studied using quasi-harmonic approximation,The additional modes,i. e.,so-called localised mode and localized bending mode are calculated numerically.展开更多
A series of samples of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15)(x=0,0.05,0.1,0.15,0.2)with quasi-one-dimensional(1D)structure were successfully synthesized under high-temperature and high-pressure conditions.The influence of ...A series of samples of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15)(x=0,0.05,0.1,0.15,0.2)with quasi-one-dimensional(1D)structure were successfully synthesized under high-temperature and high-pressure conditions.The influence of partial substitution of S for Se on the structure,electronic transport,and magnetic properties of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15) has been investigated in detail.The x-ray diffraction data shows that the lattice constant decreases linearly with increasing S-doping level,which follows the Vegrad’s law.The doped S atoms preferentially occupy the site of Se atoms in CoSe6 octahedron.Physical properties measurements indicate that all the samples of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15) are semiconducting and display spin glass behavior.As the replacement of Se by smaller size S,although the inter-chain distance decreases,the electronic hopping between CoSe/S6 chains is weakened and leads to an increase of band gap from 0.75 eV to 0.86 eV,since the S-3p electrons are more localized than Se-4p ones.Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15) exhibits 1D conducting chain characteristic.展开更多
In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using ...In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.展开更多
By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to a...By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to an elliptical orifice problem with asymmetric cracks in one-dimensional(1D)orthorhombic QCs is obtained.By using the Dugdale-Barenblatt model,the plastic simulation at the crack tip of the elliptical orifice with asymmetric cracks in 1D orthorhombic QCs is performed.Finally,the size of the atomic cohesive force zone is determined precisely,and the size of the atomic cohesive force zone around the crack tip of an elliptical orifice with a single crack or two symmetric cracks is obtained.展开更多
A new kind of one-dimensional multilayer phononie heterostructure is constructed to obtain a broad acoustic omnidirectional reflection (ODR) band. The heterostructure is formed by combining finite periodic phononic ...A new kind of one-dimensional multilayer phononie heterostructure is constructed to obtain a broad acoustic omnidirectional reflection (ODR) band. The heterostructure is formed by combining finite periodic phononic crystals (PnCs) and Fibonacci (or Thue-Morse) quasiperiodic PnCs. From the numerical results performed by the transfer matrix method, it is found that the ODR bands can be enlarged obviously by using the combination of periodic and quasi-periodic PnCs. Moreover, an application of particle swarm optimization in designing and optimizing acoustic ODR bands is reported. With regards to different thickness ratios and periodic numbers in the heterostructure, we give some optimization examples and finally achieve phononic heterostructure with a very broad ODR bandwidth. The result provides a new approach to achieve broad acoustic ODR bandwidth, and will be applied in design of omnidirectional acoustic mirrors.展开更多
Considering the discrete nonlinear Schrodinger model with dipole-dipole interactions (DDIs), we comparatively and numerically study the effects of contact interaction, DDI and disorder on the properties of diffusion...Considering the discrete nonlinear Schrodinger model with dipole-dipole interactions (DDIs), we comparatively and numerically study the effects of contact interaction, DDI and disorder on the properties of diffusion of dipolar condensate in one-dimensional quasi-periodic potentials. Due to the coupled effects of the contact interaction and the DDI, some new and interesting mechanisms are found: both the DDI and the contact interaction can destroy localization and lead to a subdiffusive growth of the second moment of the wave packet. However, compared with the contact interaction, the effect of DDI on the subdiffusion is stronger. Furthermore and interestingly, we find that when the contact interaction (λ1) and DDI (A2) satisfy λ1 ≥ 2λ2, the property of the subdiffusion depends only on contact interaction; when λ1 ≤ 2λ2, the property of the subdiffusion is completely determined by DDI. Remarkably, we numerically give the critical value of disorder strength v* for different values of contact interaction and DDI. When the disorder strength v ≥ v*, the wave packet is localized. On the contrary, when the disorder strength v ≤ v*, the wave packet is subdiffusive.展开更多
In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact inte...In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.展开更多
In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape i...In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.展开更多
The Peierls structural transition in quasi-one-dimensional organic crystals of TTF-TCNQ is investigated in the frame of a more complete physical model. The two most important electron-phonon interaction mechanisms are...The Peierls structural transition in quasi-one-dimensional organic crystals of TTF-TCNQ is investigated in the frame of a more complete physical model. The two most important electron-phonon interaction mechanisms are taken into account simultaneously. One is similar of that of deformation potential and the other is of polaron type. For simplicity, the 2D crystal model is considered. The renormalized phonon spectrum and the phonon polarization operator are calculated in the random phase approximation for different temperatures. The effects of interchain interaction on renormalized acoustic phonons and on the Peierls critical temperature are analyzed.展开更多
A new complex AgCu(IO3)3 is synthesized by mild hydrothermal method and characterized by single-crystal X-ray diffraction and magnetization measurement.AgCu(IO3)3 is triclinic,space group P1,with a = 7.3081(1),b...A new complex AgCu(IO3)3 is synthesized by mild hydrothermal method and characterized by single-crystal X-ray diffraction and magnetization measurement.AgCu(IO3)3 is triclinic,space group P1,with a = 7.3081(1),b = 7.8089(1),c = 8.2447(1)A,α = 67.159(1),β = 74.982(1),γ = 80.982(1)°,and Z = 2.AgCu(IO3)3 is isostructral with Ag Pb(IO3)3.The structure of Ag Cu(IO3)3 consists of CuO6 chain columns parallel to the c axis,formed by corner-sharing Cu(1) and Cu(2) octahedra and flanked by corner-sharing IO3 groups; these CuO6 columns are cross-linked into a three-dimensional framework through I–O and Ag–O bonds.I(1),I(2) and I(3) are coordinated respectively with 3 oxygens on the same side to form trigonal pyramids confirming the presence of a stereochemically active lone pair of each I^5+ cation.In the CuO6 chain columns,Cu(1)O6 and Cu(2)O6 octahedra are tetragonally distorted with four shorter bonds in the square planes and two longer apical bonds.Cu(1)O6 octahedra were corner sharing with Cu(2)O6 octahedra with a shorter Cu(1)–O(1) bond in the square planes and a longer apical Cu(2)–O(1) bond,which forms a Cu(1)–Cu(2) magnetic chain along the c direaction.Magnetization measurement shows weak antiferromagnetic property in low temperature range.Ag Cu(IO3)3 provides a new example of a quasi-one-dimensional magnetic system.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10761005)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010104)
文摘Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.
基金supported by the National Natural Science Foundation of China(No.10632020).
文摘The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phononic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.
基金Project supported by the National Key R&D Program of China (Grant No. 2017YFC1405605)the Innovation Youth Fund of the Ocean Telemetry Technology Innovation Center of the Ministry of Natural Resources, China (Grant No. 21k20190088)+1 种基金the Natural Science Foundation of Inner Mongolia, China (Grant No. 2018MS01005)the Graduate Students' Scientific Research Innovation Program of Inner Mongolia Normal University (Grant No. CXJJS19098).
文摘By constructing a new conformal mapping function, we study the surface effects on six edge nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional (1D) hexagonal piezoelectric quasicrystals under anti-plane shear. Based on the Gurtin–Murdoch surface/interface model and complex potential theory, the exact solutions of phonon field, phason field and electric field are obtained. The analytical solutions of the stress intensity factor of the phonon field, the stress intensity factor of the phason field, the electric displacement intensity factor and the energy release rate are given. The interaction effects of the nano-cracks and nano-hole on the stress intensity factor of the phonon field, the stress intensity factor of the phason field and the electric displacement intensity factor are discussed in numerical examples. It can be seen that the surface effect leads to the coupling of phonon field, phason field and electric field. With the decrease of cavity size, the influence of surface effect is more obvious.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11262017,11262012,and 11462020)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2015MS0129)+1 种基金the Programme of Higher-level Talents of Inner Mongolia Normal University(Grant No.RCPY-2-2012-K-035)the Key Project of Inner Mongolia Normal University(Grant No.2014ZD03)
文摘Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals.Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack,as well as the force on dislocation.The derivation is based on the conformal mapping method and the perturbation technique.The influences of the wedge angle and dislocation location on the image force are also discussed.The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03030001)the National Natural Science Foundation of China (Grant No.12075283)。
文摘Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.
基金Project supported by Shanghai Leading Academic Discipline Project (No.Y0103).
文摘Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicrystals with the Laue classes 6/mh and 6/mhmm. Through the introduction of two new functions φ and ψ, the original problem is reduced to the determination of Green's functions for two independent Helmholtz equations. The explicit expressions of displacement and stress fields are presented and their asymptotic behaviors are discussed. The static Green's function can be obtained by letting the circular frequency approach zero.
基金the National Natural Science Foundation of China(Nos.11962026,12002175,12162027,and 62161045)the Inner Mongolia Natural Science Foundation of China(No.2020MS01018)。
文摘The explicit expression of Eshelby tensors for one-dimensional(1D) hexagonal quasicrystal composites is presented by using Green’s function method. The closed forms of Eshelby tensors in the special cases of spheroid, elliptic cylinder, ribbon-like,penny-shaped, and rod-shaped inclusions embedded in 1 D hexagonal quasicrystal matrices are given. As an application of Eshelby tensors, the analytical expressions for the effective properties of the 1 D hexagonal quasicrystal composites are derived based on the Mori-Tanaka method. The effects of the volume fraction of the inclusion on the elastic properties of the composite materials are discussed.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
文摘Plane elasticity theory of one-dimensional hexagonal quasicrystals with point group 6 is proposed and established. As an application of this theory, one typical example of dislocation problem in the quasicrystals is investigated and its exact analytic solution is presented. The result obtained indicates that the stress components of (elastic) fields of a straight dislocation in the quasicrystals still first order singularity, which is the same as the (general crystals,) but are related with the Burgers vector of phason fields, which is different from the general (crystals.)
文摘We have investigated the energy states of a one-dimensional electron gas and analyzed the temperature dependence of the density of states. It is shown that with increasing temperature due to thermal broadening of quantum, levels are blurred.
基金Supported by the National Natural Science Foundation of China.
文摘Linear modes around a polaron in the quasi-one-dimensional iialogezi-bridged mixed-valence platinum compounds is studied using quasi-harmonic approximation,The additional modes,i. e.,so-called localised mode and localized bending mode are calculated numerically.
基金supported by the Doctoral Fund of Henan University of Technology(Grant No.2020BS029)the National Key R&D Program of China(Grant Nos.2018YFA0305700 and 2017YFA0302900)+1 种基金the National Natural Science Foundation of China(Grant Nos.11974410 and 11820101003)the Stable Support Plan Program of Shenzhen Natural Science Fund(Grant No.20200925152415003)。
文摘A series of samples of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15)(x=0,0.05,0.1,0.15,0.2)with quasi-one-dimensional(1D)structure were successfully synthesized under high-temperature and high-pressure conditions.The influence of partial substitution of S for Se on the structure,electronic transport,and magnetic properties of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15) has been investigated in detail.The x-ray diffraction data shows that the lattice constant decreases linearly with increasing S-doping level,which follows the Vegrad’s law.The doped S atoms preferentially occupy the site of Se atoms in CoSe6 octahedron.Physical properties measurements indicate that all the samples of Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15) are semiconducting and display spin glass behavior.As the replacement of Se by smaller size S,although the inter-chain distance decreases,the electronic hopping between CoSe/S6 chains is weakened and leads to an increase of band gap from 0.75 eV to 0.86 eV,since the S-3p electrons are more localized than Se-4p ones.Ba_(9)Co_(3)(Se_(1−x)S_(x))_(15) exhibits 1D conducting chain characteristic.
基金supported by the State Key Development Program for Basic Research of China (Grant No 2006CB303102)Science and Technology Commission of Shanghai Municipality,China (Grant No 09DZ2272900)
文摘In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.
基金Project supported by the National Natural Science Foundation of China(Nos.12162027 and 11962026)the Natural Science Key Project of Science and Technology Research in Higher Education Institutions of Inner Mongolia Autonomous Region(No.NJZZ22574)。
文摘By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to an elliptical orifice problem with asymmetric cracks in one-dimensional(1D)orthorhombic QCs is obtained.By using the Dugdale-Barenblatt model,the plastic simulation at the crack tip of the elliptical orifice with asymmetric cracks in 1D orthorhombic QCs is performed.Finally,the size of the atomic cohesive force zone is determined precisely,and the size of the atomic cohesive force zone around the crack tip of an elliptical orifice with a single crack or two symmetric cracks is obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304286,11274279 and 11174255the Scientific Research Fund of Zhejiang Provincial Education Department under Grant No Y201226257
文摘A new kind of one-dimensional multilayer phononie heterostructure is constructed to obtain a broad acoustic omnidirectional reflection (ODR) band. The heterostructure is formed by combining finite periodic phononic crystals (PnCs) and Fibonacci (or Thue-Morse) quasiperiodic PnCs. From the numerical results performed by the transfer matrix method, it is found that the ODR bands can be enlarged obviously by using the combination of periodic and quasi-periodic PnCs. Moreover, an application of particle swarm optimization in designing and optimizing acoustic ODR bands is reported. With regards to different thickness ratios and periodic numbers in the heterostructure, we give some optimization examples and finally achieve phononic heterostructure with a very broad ODR bandwidth. The result provides a new approach to achieve broad acoustic ODR bandwidth, and will be applied in design of omnidirectional acoustic mirrors.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274255 and 11305132the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grand No 20136203110001+1 种基金the Natural Science Foundation of Gansu Province under Grant No 2011GS04358the Creation of Science and Technology of Northwest Normal University under Grant Nos NWNU-KJCXGC-03-48 and NWNU-LKQN-12-12
文摘Considering the discrete nonlinear Schrodinger model with dipole-dipole interactions (DDIs), we comparatively and numerically study the effects of contact interaction, DDI and disorder on the properties of diffusion of dipolar condensate in one-dimensional quasi-periodic potentials. Due to the coupled effects of the contact interaction and the DDI, some new and interesting mechanisms are found: both the DDI and the contact interaction can destroy localization and lead to a subdiffusive growth of the second moment of the wave packet. However, compared with the contact interaction, the effect of DDI on the subdiffusion is stronger. Furthermore and interestingly, we find that when the contact interaction (λ1) and DDI (A2) satisfy λ1 ≥ 2λ2, the property of the subdiffusion depends only on contact interaction; when λ1 ≤ 2λ2, the property of the subdiffusion is completely determined by DDI. Remarkably, we numerically give the critical value of disorder strength v* for different values of contact interaction and DDI. When the disorder strength v ≥ v*, the wave packet is localized. On the contrary, when the disorder strength v ≤ v*, the wave packet is subdiffusive.
基金Project supported by the National Natural Science Foundation of China(Nos.11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation(No.2019M652563)。
文摘In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.
基金Project supported by the National Natural Science Foundation of China (Nos. 11572289, 1171407,11702252, and 11902293)the China Postdoctoral Science Foundation (No. 2019M652563)。
文摘In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.
文摘The Peierls structural transition in quasi-one-dimensional organic crystals of TTF-TCNQ is investigated in the frame of a more complete physical model. The two most important electron-phonon interaction mechanisms are taken into account simultaneously. One is similar of that of deformation potential and the other is of polaron type. For simplicity, the 2D crystal model is considered. The renormalized phonon spectrum and the phonon polarization operator are calculated in the random phase approximation for different temperatures. The effects of interchain interaction on renormalized acoustic phonons and on the Peierls critical temperature are analyzed.
文摘A new complex AgCu(IO3)3 is synthesized by mild hydrothermal method and characterized by single-crystal X-ray diffraction and magnetization measurement.AgCu(IO3)3 is triclinic,space group P1,with a = 7.3081(1),b = 7.8089(1),c = 8.2447(1)A,α = 67.159(1),β = 74.982(1),γ = 80.982(1)°,and Z = 2.AgCu(IO3)3 is isostructral with Ag Pb(IO3)3.The structure of Ag Cu(IO3)3 consists of CuO6 chain columns parallel to the c axis,formed by corner-sharing Cu(1) and Cu(2) octahedra and flanked by corner-sharing IO3 groups; these CuO6 columns are cross-linked into a three-dimensional framework through I–O and Ag–O bonds.I(1),I(2) and I(3) are coordinated respectively with 3 oxygens on the same side to form trigonal pyramids confirming the presence of a stereochemically active lone pair of each I^5+ cation.In the CuO6 chain columns,Cu(1)O6 and Cu(2)O6 octahedra are tetragonally distorted with four shorter bonds in the square planes and two longer apical bonds.Cu(1)O6 octahedra were corner sharing with Cu(2)O6 octahedra with a shorter Cu(1)–O(1) bond in the square planes and a longer apical Cu(2)–O(1) bond,which forms a Cu(1)–Cu(2) magnetic chain along the c direaction.Magnetization measurement shows weak antiferromagnetic property in low temperature range.Ag Cu(IO3)3 provides a new example of a quasi-one-dimensional magnetic system.