A one step real space renormalization group(RSRG)transformation is used to study the ferromagnetic(FM)Potts model on the two dimemsional (2D) octagonal quasi periodic tiling(OQT). The critical exponents of the ...A one step real space renormalization group(RSRG)transformation is used to study the ferromagnetic(FM)Potts model on the two dimemsional (2D) octagonal quasi periodic tiling(OQT). The critical exponents of the correlation length in the q =1,2,3,4 cases and the crtitical surface of the Ising model are obtained. The results are discussed by comparing with previous results on the OQT and the square lattice(SQL).展开更多
In this paper, we establish a general theta function identity. It is a common origin of many theta function identities. From which many classical and new modular equations are derived. All the proofs are elementary.
We analyze the periodic orbits, quasi periodic orbits and chaotic orbits in the photo gravitational Sun-Saturn system incorporating actual oblateness of Saturn in the planar circular restricted three body problem. In ...We analyze the periodic orbits, quasi periodic orbits and chaotic orbits in the photo gravitational Sun-Saturn system incorporating actual oblateness of Saturn in the planar circular restricted three body problem. In this paper, we study the effect of solar radiation pressure on the location of Sun centered and Saturn centered orbits, its diameter, semi major axis and eccentricity by taking different values of solar radiation pressure q and different values of Jacobi constant “C”, and by considering actual oblateness of Saturn using Poincare surface of section (PSS) method. It is ob-served that by the introduction of perturbing force due to solar radiation pressure admissible range of Jacobi constant C decreases, it is also observed that as value of C decreases the number of islands decreases and as a result the number of periodic and quasi periodic orbits decreases.Fur-ther, the periodic orbits around Saturn and Sun moves towards Sun by decreasing perturbation due to solar radiation pressure q for a specific choice of Jacobi constant C. It is also observed that due to solar radiation pressure, semi major axis and eccentricity of Sun centered periodic orbit reduces, whereas, due to solar radiation pressure uniform change in semi major axis and eccen-tricity of Saturn centered periodic orbits is observed.展开更多
We analyze the periodic orbits of “f” family (simply symmetric retrograde periodic orbits) and the regions of quasi-periodic motion around Saturn in the photo gravitational Sun-Saturn system in the framework of plan...We analyze the periodic orbits of “f” family (simply symmetric retrograde periodic orbits) and the regions of quasi-periodic motion around Saturn in the photo gravitational Sun-Saturn system in the framework of planar circular restricted three-body problem with oblateness. The location, nature and size of these orbits are studied using the numerical technique of Poincare surface of sections (PSS). In this paper we analyze these orbits for different solar radiation pressure (q) and actual oblateness coefficient of Sun Saturn system. It is observed that as Jacobi constant (C) increases, the number of islands in the PSS and consequently the number of periodic and quasi-periodic orbits increase. The periodic orbits around Saturn move towards the Sun with decrease in solar radiation pressure for given value of “C”. It is observed that as the perturbation due to solar radiation pressure decreases, the two separatrices come closer to each other and also come closer to Saturn. It is found that the eccentricity and semi major axis of periodic orbits at both separatrices are increased by perturbation due to solar radiation pressure.展开更多
文摘A one step real space renormalization group(RSRG)transformation is used to study the ferromagnetic(FM)Potts model on the two dimemsional (2D) octagonal quasi periodic tiling(OQT). The critical exponents of the correlation length in the q =1,2,3,4 cases and the crtitical surface of the Ising model are obtained. The results are discussed by comparing with previous results on the OQT and the square lattice(SQL).
基金Supported by the National Natural Science Foundation of China(11071107, 11371184)
文摘In this paper, we establish a general theta function identity. It is a common origin of many theta function identities. From which many classical and new modular equations are derived. All the proofs are elementary.
文摘We analyze the periodic orbits, quasi periodic orbits and chaotic orbits in the photo gravitational Sun-Saturn system incorporating actual oblateness of Saturn in the planar circular restricted three body problem. In this paper, we study the effect of solar radiation pressure on the location of Sun centered and Saturn centered orbits, its diameter, semi major axis and eccentricity by taking different values of solar radiation pressure q and different values of Jacobi constant “C”, and by considering actual oblateness of Saturn using Poincare surface of section (PSS) method. It is ob-served that by the introduction of perturbing force due to solar radiation pressure admissible range of Jacobi constant C decreases, it is also observed that as value of C decreases the number of islands decreases and as a result the number of periodic and quasi periodic orbits decreases.Fur-ther, the periodic orbits around Saturn and Sun moves towards Sun by decreasing perturbation due to solar radiation pressure q for a specific choice of Jacobi constant C. It is also observed that due to solar radiation pressure, semi major axis and eccentricity of Sun centered periodic orbit reduces, whereas, due to solar radiation pressure uniform change in semi major axis and eccen-tricity of Saturn centered periodic orbits is observed.
文摘We analyze the periodic orbits of “f” family (simply symmetric retrograde periodic orbits) and the regions of quasi-periodic motion around Saturn in the photo gravitational Sun-Saturn system in the framework of planar circular restricted three-body problem with oblateness. The location, nature and size of these orbits are studied using the numerical technique of Poincare surface of sections (PSS). In this paper we analyze these orbits for different solar radiation pressure (q) and actual oblateness coefficient of Sun Saturn system. It is observed that as Jacobi constant (C) increases, the number of islands in the PSS and consequently the number of periodic and quasi-periodic orbits increase. The periodic orbits around Saturn move towards the Sun with decrease in solar radiation pressure for given value of “C”. It is observed that as the perturbation due to solar radiation pressure decreases, the two separatrices come closer to each other and also come closer to Saturn. It is found that the eccentricity and semi major axis of periodic orbits at both separatrices are increased by perturbation due to solar radiation pressure.