A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and...A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.展开更多
Two new design approaches for constructing Low-Density Parity-Check(LDPC) codes are proposed.One is used to design regular Quasi-Cyclic LDPC(QC-LDPC) codes with girth at least 8.The other is used to design irregular L...Two new design approaches for constructing Low-Density Parity-Check(LDPC) codes are proposed.One is used to design regular Quasi-Cyclic LDPC(QC-LDPC) codes with girth at least 8.The other is used to design irregular LDPC codes.Both of their parity-check matrices are composed of Circulant Permutation Matrices(CPMs).When iteratively decoded with the Sum-Product Algorithm(SPA),these proposed codes exhibit good performances over the AWGN channel.展开更多
本文证明:如果f(z)是拓广复平面到自身使得f(0)=0,f(1)=1和f(∞)=∞的一个Q拟共形映照。则对任何r,|z|≤r |f(z)|≤r,成立|f(z)-z|≤4/π rK(1/1+r)K(r/1+r)·logQ,其中K(t)=integral from n=0 to 1(dx/((1-x^2)(1-tx^2))^(1/2)。...本文证明:如果f(z)是拓广复平面到自身使得f(0)=0,f(1)=1和f(∞)=∞的一个Q拟共形映照。则对任何r,|z|≤r |f(z)|≤r,成立|f(z)-z|≤4/π rK(1/1+r)K(r/1+r)·logQ,其中K(t)=integral from n=0 to 1(dx/((1-x^2)(1-tx^2))^(1/2)。它是夏道行的一个定理的拓广。展开更多
The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel c...The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel class of quantum Low Density Parity Check (LDPC) codes constructed from cyclic classes of lines in Euclidean Geometry (EG). The corresponding constructed parity check matrix has quasi-cyclic structure that can be encoded flexibility, and satisfies the requirement of dual-containing quantum code. Taking the advantage of quasi-cyclic structure, we use a structured approach to construct Generalized Parity Check Matrix (GPCM). This new class of quantum codes has higher code rate, more sparse check matrix, and exactly one four-cycle in each pair of two rows. Ex-perimental results show that the proposed quantum codes, such as EG(2,q)II-QECC, EG(3,q)II-QECC, have better performance than that of other methods based on EG, over the depolarizing channel and decoded with iterative decoding based on the sum-product decoding algorithm.展开更多
Based on the intuitionistic first order predicate calculusH given by Thomason with the modal machinery of MIPC put forward by Prior this paper obtains the intuitionistic quantified modal logic system MIPC*, gives it a...Based on the intuitionistic first order predicate calculusH given by Thomason with the modal machinery of MIPC put forward by Prior this paper obtains the intuitionistic quantified modal logic system MIPC*, gives it a semantic interpretation and proves its strong (thus also weak) completeness theorem and soundness theorem with respect to that semantic. Since Zorn lemma plays a decisive role in our discussion, methodologically, it was even farther from the intuitionistic point of view than Thomason's result.展开更多
An improved Euclidean geometry approach to design quasi-cyclic (QC) Low-density parity-check (LDPC) codes with high-rate and low error floor is presented. The constructed QC-LDPC codes with high-rate have lower er...An improved Euclidean geometry approach to design quasi-cyclic (QC) Low-density parity-check (LDPC) codes with high-rate and low error floor is presented. The constructed QC-LDPC codes with high-rate have lower error floor than the original codes. The distribution of the minimum weight codeword is analyzed, and a sufficient existence condition of the minimum weight codeword is found. Simulations show that a lot of QC-LDPC codes with lower error floor can be designed by reducing the number of the minimum weight codewords satisfying this sufficient condition.展开更多
基金Supported by the National Key Basic Research Program (973) Project (No. 2010CB328300)the 111 Project (No. B08038)
文摘A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.
基金Supported by the National Natural Science Foundation of China(Nos.61271199,61172022)
文摘Two new design approaches for constructing Low-Density Parity-Check(LDPC) codes are proposed.One is used to design regular Quasi-Cyclic LDPC(QC-LDPC) codes with girth at least 8.The other is used to design irregular LDPC codes.Both of their parity-check matrices are composed of Circulant Permutation Matrices(CPMs).When iteratively decoded with the Sum-Product Algorithm(SPA),these proposed codes exhibit good performances over the AWGN channel.
文摘本文证明:如果f(z)是拓广复平面到自身使得f(0)=0,f(1)=1和f(∞)=∞的一个Q拟共形映照。则对任何r,|z|≤r |f(z)|≤r,成立|f(z)-z|≤4/π rK(1/1+r)K(r/1+r)·logQ,其中K(t)=integral from n=0 to 1(dx/((1-x^2)(1-tx^2))^(1/2)。它是夏道行的一个定理的拓广。
基金Supported by the National Natural Science Foundation ofChina (No. 61071145,41074090)the Specialized Research Fund for the Doctoral Program of Higher Education (200802880014)
文摘The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel class of quantum Low Density Parity Check (LDPC) codes constructed from cyclic classes of lines in Euclidean Geometry (EG). The corresponding constructed parity check matrix has quasi-cyclic structure that can be encoded flexibility, and satisfies the requirement of dual-containing quantum code. Taking the advantage of quasi-cyclic structure, we use a structured approach to construct Generalized Parity Check Matrix (GPCM). This new class of quantum codes has higher code rate, more sparse check matrix, and exactly one four-cycle in each pair of two rows. Ex-perimental results show that the proposed quantum codes, such as EG(2,q)II-QECC, EG(3,q)II-QECC, have better performance than that of other methods based on EG, over the depolarizing channel and decoded with iterative decoding based on the sum-product decoding algorithm.
文摘Based on the intuitionistic first order predicate calculusH given by Thomason with the modal machinery of MIPC put forward by Prior this paper obtains the intuitionistic quantified modal logic system MIPC*, gives it a semantic interpretation and proves its strong (thus also weak) completeness theorem and soundness theorem with respect to that semantic. Since Zorn lemma plays a decisive role in our discussion, methodologically, it was even farther from the intuitionistic point of view than Thomason's result.
基金supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (11JK1007)the Program for Young Teachers in Xi’an University of Posts and Telecommunications (0001286)the National Basic Research Program of China (2012CB328300)
文摘An improved Euclidean geometry approach to design quasi-cyclic (QC) Low-density parity-check (LDPC) codes with high-rate and low error floor is presented. The constructed QC-LDPC codes with high-rate have lower error floor than the original codes. The distribution of the minimum weight codeword is analyzed, and a sufficient existence condition of the minimum weight codeword is found. Simulations show that a lot of QC-LDPC codes with lower error floor can be designed by reducing the number of the minimum weight codewords satisfying this sufficient condition.