In is paper, a necessary and sufficient condition of regularity of (0,2)_interpolation on the zeros of the Lascenov Polynomials R (α,β) n(x)(α,β>-1) in a manageable form is estabished. Meanwhile, the exp...In is paper, a necessary and sufficient condition of regularity of (0,2)_interpolation on the zeros of the Lascenov Polynomials R (α,β) n(x)(α,β>-1) in a manageable form is estabished. Meanwhile, the explicit representation of the fundamental polynomials, when they exist, is given.展开更多
In this paper we investigate simultaneous approximation for arbitrary system of nodes on smooth domain in complex plane. Some results which are better than those of known theorems are obtained.
In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] ...In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.展开更多
In this note, we seek for functions f which are approximated by the sequence of interpolation polynomials of f obtained by any prescribed system of nodes.
Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P&...Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P'n-1(x). By the theory of the inverse Pal-Type interpolation, for a function f(x) ∈ C[-1 1], there exists a unique polynomial Rn(x) of degree 2n - 2 (if n is even) satisfying conditions Rn(f,ξk) = f(∈ek)(1≤ k≤ n - 1) ;R'n(f,xk) = f'(xk)(1≤ k≤ n). This paper discusses the simultaneous approximation to a differentiable function f by inverse Pal-Type interpolation polynomial {Rn(f,x)} (n is even) and the main result of this paper is that if f ∈ C'[1,1], r≥2, n≥ + 2> and n is even thenholds uniformly for all x ∈ [- 1,1], where h(x) = 1 +展开更多
The following theorem is proved Theorem 1.Let q be a polynomial of degree n(qP_n)with n distinct zeroes lying in the interval[-1,1] and △'_q={-1}∪{τ_i:q'(τ_i)=0,i=1,n-1}∪{1}. If polynomial pP_n satisfies ...The following theorem is proved Theorem 1.Let q be a polynomial of degree n(qP_n)with n distinct zeroes lying in the interval[-1,1] and △'_q={-1}∪{τ_i:q'(τ_i)=0,i=1,n-1}∪{1}. If polynomial pP_n satisfies the inequality then for each k=1,n and any x[-1,1]its k-th derivative satisfies the inequality 丨p^(k)(x)丨≤max{丨q^((k))(x)丨,丨1/k(x^2-1)q^(k+1)(x)+xq^((k))(x)丨}. This estimate leads to the Markov inequality for the higher order derivatives of polynomials if we set q=T_n,where Tn is Chebyshev polynomial least deviated from zero. Some other results are established which gives evidence to the conjecture that under the conditions of Theorem 1 the inequality ‖p^((k))‖≤‖q^(k)‖holds.展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication. The cost function cons...This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication. The cost function constructed of the total energy of null subcarriers through discrete Fourier transform (DFT) is proposed. The frequencies of null subcarriers are identified from non-uniform Doppler shift at each tentative scaling factor. Then it is proved that the cost function can be fitted as a quadratic polynomial near the global minimum. An accurate Doppler scale estimation is achieved by the location of the global scarifying precision and increasing the computation minimum through polynomial interpolation, without complexity. A shallow water experiment is conducted to demonstrate the performance of the proposed method. Excellent performance results are obtained in ultrawideband UWA channels with a relative bandwidth of 67%, when the transmitter and the receiver are moving at a relative speed of 5 kn, which validates the proposed method.展开更多
We propose a k-domain spline interpolation method with constrained polynomial fit based on spectral phase in swept-source optical coherence tomography(SS-OCT).A Mach-Zehnder interferometer(MZI)unit is connected to.the...We propose a k-domain spline interpolation method with constrained polynomial fit based on spectral phase in swept-source optical coherence tomography(SS-OCT).A Mach-Zehnder interferometer(MZI)unit is connected to.the swept-source of the SS-OCT system to generate calibration signal in sync with the fetching of interference spectra.The spectral phase of the calibration signal is extracted by Hilbert transformation.The fitted phase-time relationship is obtained by polynomial fitting with the constraint of passing through the central spectral phase.The fitting curve is then adopted for k-domain uniform interpolation based on evenly spaced phase.In comparison with conventional k-domain spline interpolation,the proposed method leads to improved axial resolution and peak response of the axial point spread function(PSF)of the SS-OCT system.Enhanced performance resulting from the proposed method is further verified by OCT imaging of a home-constructed microspheres-agar sample and a fresh lemon.Besides SS-OCT,the proposed method is believed to be applicable to spectral domain OCT as well.展开更多
This paper considers to replace △_m(x)=(1-x^2)~2(1/2)/n +1/n^2 in the following result for simultaneous Lagrange interpolating approximation with (1-x^2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then |f^(k)(x)-P_^...This paper considers to replace △_m(x)=(1-x^2)~2(1/2)/n +1/n^2 in the following result for simultaneous Lagrange interpolating approximation with (1-x^2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then |f^(k)(x)-P_^(k)(f,x)|=O(1)△_(n)^(a-k)(x)ω(f^(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q, where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_n U Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.展开更多
This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of...This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).展开更多
Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the...Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are considered in the absence of the limitations of scalar and semivectorial approximation, and the present PD scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for buried rectangular waveguides and optical rib waveguides are presented. The hybrid nature of the vectorial modes is demonstrated and the singular behaviours of the minor field components in the corners are observed. Moreover, solutions are in good agreement with those published early, which tests the validity of the present approach.展开更多
This paper offers a general formula for surface subdivision rules for quad meshes by using 2-D Lagrange interpolating polynomial [1]. We also see that the result obtained is equivalent to the tensor product of (2N + 4...This paper offers a general formula for surface subdivision rules for quad meshes by using 2-D Lagrange interpolating polynomial [1]. We also see that the result obtained is equivalent to the tensor product of (2N + 4)-point n-ary interpolating curve scheme for N ≥ 0 and n ≥ 2. The simple interpolatory subdivision scheme for quadrilateral nets with arbitrary topology is presented by L. Kobbelt [2], which can be directly calculated from the proposed formula. Furthermore, some characteristics and applications of the proposed work are also discussed.展开更多
We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, ...We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.展开更多
In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate con...In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate convexity-preserving in-terpolating transcendental curves;even constructing convexity-preserving interpolating polynomial curves,it is required to solve a system of equations or recur to a complicated iterative process. The method developed in this paper overcomes the above draw-backs. The basic idea is:first to construct a kind of trigonometric polynomial curves with a shape parameter,and interpolating trigonometric polynomial parametric curves with C2(or G1) continuity can be automatically generated without having to solve any system of equations or do any iterative computation. Then,the convexity of the constructed curves can be guaranteed by the appropriate value of the shape parameter. Performing the method is easy and fast,and the curvature distribution of the resulting interpolating curves is always well-proportioned. Several numerical examples are shown to substantiate that our algorithm is not only correct but also usable.展开更多
In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous fun...In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous function f(x) . The convergence order is the best order if \{f(x)∈C j[-1,1],\}0jr, where r is an odd natural number.展开更多
The multivariate splines which were first presented by deBooor as a complete theoretical system have intrigued many mathematicians who have devoted many works in this field which is still in the process of development...The multivariate splines which were first presented by deBooor as a complete theoretical system have intrigued many mathematicians who have devoted many works in this field which is still in the process of development.The author of this paper is interested in the area of inter- polation with special emphasis on the interpolation methods and their approximation orders. But such B-splines(both univariate and multivariate)do not interpolated directly,so I ap- proached this problem in another way which is to extend my interpolating spline of degree 2n-1 in univariate case(See[7])to multivariate case.I selected triangulated region which is inspired by other mathematicians'works(e.g.[2]and[3])and extend the interpolating polynomials from univariate to m-variate case(See[10])In this paper some results in the case m=2 are discussed and proved in more concrete details.Based on these polynomials,the interpolating splines(it is defined by me as piecewise polynomials in which the unknown par- tial derivatives are determined under certain continuous conditions)are also discussed.The approximation orders of interpolating polynomials and of cubic interpolating splines are inverstigated.We lunited our discussion on the rectangular domain which is partitioned into equal right triangles.As to the case in which the rectangular domain is partitioned into unequal right triangles as well as the case of more complicated domains,we will discuss in the next pa- per.展开更多
Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the challenge of the selection of the proper function class with polynomial smooth techniques applied to support v...Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the challenge of the selection of the proper function class with polynomial smooth techniques applied to support vector regression models, this study takes cubic spline interpolation to generate a new polynomial smooth function |×|ε^ 2, in g-insensitive support vector regression. Theoretical analysis shows that Sε^2 -function is better than pε^2 -function in properties, and the approximation accuracy of the proposed smoothing function is two order higher than that of classical pε^2 -function. The experimental data shows the efficiency of the new approach.展开更多
The tempered fractional calculus has been successfully applied for depicting the time evolution of a system describing non-Markovian diffusion particles.The related governing equations are a series of partial differen...The tempered fractional calculus has been successfully applied for depicting the time evolution of a system describing non-Markovian diffusion particles.The related governing equations are a series of partial differential equations with tempered fractional derivatives.Using the polynomial interpolation technique,in this paper,we present three efficient numerical formulas,namely the tempered L1 formula,the tempered L1-2 formula,and the tempered L2-1_(σ)formula,to approximate the Caputo-tempered fractional derivative of orderα∈(0,1).The truncation error of the tempered L1 formula is of order 2-α,and the tempered L1-2 formula and L2-1_(σ)formula are of order 3-α.As an application,we construct implicit schemes and implicit ADI schemes for one-dimensional and two-dimensional time-tempered fractional diffusion equations,respectively.Furthermore,the unconditional stability and convergence of two developed difference schemes with tempered L1 and L2-1_(σ)formulas are proved by the Fourier analysis method.Finally,we provide several numerical examples to demonstrate the correctness and effectiveness of the theoretical analysis.展开更多
In this paper. a quantitative estimate for Hermite interpolant to function ψ(z)=(z^m-β~m)~l on the ze- ros of (z^n-α~n)~r is obtained Using this estimate. a rather wide exiension of the theorem of Walsh is proved a...In this paper. a quantitative estimate for Hermite interpolant to function ψ(z)=(z^m-β~m)~l on the ze- ros of (z^n-α~n)~r is obtained Using this estimate. a rather wide exiension of the theorem of Walsh is proved and five special cases of it are given.展开更多
文摘In is paper, a necessary and sufficient condition of regularity of (0,2)_interpolation on the zeros of the Lascenov Polynomials R (α,β) n(x)(α,β>-1) in a manageable form is estabished. Meanwhile, the explicit representation of the fundamental polynomials, when they exist, is given.
文摘In this paper we investigate simultaneous approximation for arbitrary system of nodes on smooth domain in complex plane. Some results which are better than those of known theorems are obtained.
文摘In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.
文摘In this note, we seek for functions f which are approximated by the sequence of interpolation polynomials of f obtained by any prescribed system of nodes.
文摘Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P'n-1(x). By the theory of the inverse Pal-Type interpolation, for a function f(x) ∈ C[-1 1], there exists a unique polynomial Rn(x) of degree 2n - 2 (if n is even) satisfying conditions Rn(f,ξk) = f(∈ek)(1≤ k≤ n - 1) ;R'n(f,xk) = f'(xk)(1≤ k≤ n). This paper discusses the simultaneous approximation to a differentiable function f by inverse Pal-Type interpolation polynomial {Rn(f,x)} (n is even) and the main result of this paper is that if f ∈ C'[1,1], r≥2, n≥ + 2> and n is even thenholds uniformly for all x ∈ [- 1,1], where h(x) = 1 +
文摘The following theorem is proved Theorem 1.Let q be a polynomial of degree n(qP_n)with n distinct zeroes lying in the interval[-1,1] and △'_q={-1}∪{τ_i:q'(τ_i)=0,i=1,n-1}∪{1}. If polynomial pP_n satisfies the inequality then for each k=1,n and any x[-1,1]its k-th derivative satisfies the inequality 丨p^(k)(x)丨≤max{丨q^((k))(x)丨,丨1/k(x^2-1)q^(k+1)(x)+xq^((k))(x)丨}. This estimate leads to the Markov inequality for the higher order derivatives of polynomials if we set q=T_n,where Tn is Chebyshev polynomial least deviated from zero. Some other results are established which gives evidence to the conjecture that under the conditions of Theorem 1 the inequality ‖p^((k))‖≤‖q^(k)‖holds.
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
基金supported by the National Natural Science Foundation of China(6120109661471137+4 种基金61501061)the Qing Lan Project of Jiangsu Province,the Science and Technology Program of Changzhou City(CJ20130026CE20135060CE20145055)the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University)(1316)
文摘This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication. The cost function constructed of the total energy of null subcarriers through discrete Fourier transform (DFT) is proposed. The frequencies of null subcarriers are identified from non-uniform Doppler shift at each tentative scaling factor. Then it is proved that the cost function can be fitted as a quadratic polynomial near the global minimum. An accurate Doppler scale estimation is achieved by the location of the global scarifying precision and increasing the computation minimum through polynomial interpolation, without complexity. A shallow water experiment is conducted to demonstrate the performance of the proposed method. Excellent performance results are obtained in ultrawideband UWA channels with a relative bandwidth of 67%, when the transmitter and the receiver are moving at a relative speed of 5 kn, which validates the proposed method.
基金The authors acknowledge funding from National Key Research and Development Program of China(2017FA0700501)National Natural Science Foundation of China(62035011,11974310,31927801,61905214)+1 种基金Natural Science Foundation of Zhejiang Province(LR20F050001)Fundamental Research Funds for the Central Universities.
文摘We propose a k-domain spline interpolation method with constrained polynomial fit based on spectral phase in swept-source optical coherence tomography(SS-OCT).A Mach-Zehnder interferometer(MZI)unit is connected to.the swept-source of the SS-OCT system to generate calibration signal in sync with the fetching of interference spectra.The spectral phase of the calibration signal is extracted by Hilbert transformation.The fitted phase-time relationship is obtained by polynomial fitting with the constraint of passing through the central spectral phase.The fitting curve is then adopted for k-domain uniform interpolation based on evenly spaced phase.In comparison with conventional k-domain spline interpolation,the proposed method leads to improved axial resolution and peak response of the axial point spread function(PSF)of the SS-OCT system.Enhanced performance resulting from the proposed method is further verified by OCT imaging of a home-constructed microspheres-agar sample and a fresh lemon.Besides SS-OCT,the proposed method is believed to be applicable to spectral domain OCT as well.
文摘This paper considers to replace △_m(x)=(1-x^2)~2(1/2)/n +1/n^2 in the following result for simultaneous Lagrange interpolating approximation with (1-x^2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then |f^(k)(x)-P_^(k)(f,x)|=O(1)△_(n)^(a-k)(x)ω(f^(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q, where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_n U Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.
基金The second named author was supported in part by an NSERC Postdoctoral Fellowship,Canada and a CR F Grant,University of Alberta
文摘This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).
文摘Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are considered in the absence of the limitations of scalar and semivectorial approximation, and the present PD scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for buried rectangular waveguides and optical rib waveguides are presented. The hybrid nature of the vectorial modes is demonstrated and the singular behaviours of the minor field components in the corners are observed. Moreover, solutions are in good agreement with those published early, which tests the validity of the present approach.
文摘This paper offers a general formula for surface subdivision rules for quad meshes by using 2-D Lagrange interpolating polynomial [1]. We also see that the result obtained is equivalent to the tensor product of (2N + 4)-point n-ary interpolating curve scheme for N ≥ 0 and n ≥ 2. The simple interpolatory subdivision scheme for quadrilateral nets with arbitrary topology is presented by L. Kobbelt [2], which can be directly calculated from the proposed formula. Furthermore, some characteristics and applications of the proposed work are also discussed.
基金Supported by the National Nature Science Foundation.
文摘We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719400)the National Natural Science Founda-tion of China (Nos. 60673031 and 60333010) the National Natural Science Foundation for Innovative Research Groups of China (No. 60021201)
文摘In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate convexity-preserving in-terpolating transcendental curves;even constructing convexity-preserving interpolating polynomial curves,it is required to solve a system of equations or recur to a complicated iterative process. The method developed in this paper overcomes the above draw-backs. The basic idea is:first to construct a kind of trigonometric polynomial curves with a shape parameter,and interpolating trigonometric polynomial parametric curves with C2(or G1) continuity can be automatically generated without having to solve any system of equations or do any iterative computation. Then,the convexity of the constructed curves can be guaranteed by the appropriate value of the shape parameter. Performing the method is easy and fast,and the curvature distribution of the resulting interpolating curves is always well-proportioned. Several numerical examples are shown to substantiate that our algorithm is not only correct but also usable.
文摘In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous function f(x) . The convergence order is the best order if \{f(x)∈C j[-1,1],\}0jr, where r is an odd natural number.
文摘The multivariate splines which were first presented by deBooor as a complete theoretical system have intrigued many mathematicians who have devoted many works in this field which is still in the process of development.The author of this paper is interested in the area of inter- polation with special emphasis on the interpolation methods and their approximation orders. But such B-splines(both univariate and multivariate)do not interpolated directly,so I ap- proached this problem in another way which is to extend my interpolating spline of degree 2n-1 in univariate case(See[7])to multivariate case.I selected triangulated region which is inspired by other mathematicians'works(e.g.[2]and[3])and extend the interpolating polynomials from univariate to m-variate case(See[10])In this paper some results in the case m=2 are discussed and proved in more concrete details.Based on these polynomials,the interpolating splines(it is defined by me as piecewise polynomials in which the unknown par- tial derivatives are determined under certain continuous conditions)are also discussed.The approximation orders of interpolating polynomials and of cubic interpolating splines are inverstigated.We lunited our discussion on the rectangular domain which is partitioned into equal right triangles.As to the case in which the rectangular domain is partitioned into unequal right triangles as well as the case of more complicated domains,we will discuss in the next pa- per.
基金Supported by Guangdong Natural Science Foundation Project(No.S2011010002144)Province and Ministry Production and Research Projects(No.2012B091100497,2012B091100191,2012B091100383)+1 种基金Guangdong Province Enterprise Laboratory Project(No.2011A091000046)Guangdong Province Science and Technology Major Project(No.2012A080103010)
文摘Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the challenge of the selection of the proper function class with polynomial smooth techniques applied to support vector regression models, this study takes cubic spline interpolation to generate a new polynomial smooth function |×|ε^ 2, in g-insensitive support vector regression. Theoretical analysis shows that Sε^2 -function is better than pε^2 -function in properties, and the approximation accuracy of the proposed smoothing function is two order higher than that of classical pε^2 -function. The experimental data shows the efficiency of the new approach.
文摘The tempered fractional calculus has been successfully applied for depicting the time evolution of a system describing non-Markovian diffusion particles.The related governing equations are a series of partial differential equations with tempered fractional derivatives.Using the polynomial interpolation technique,in this paper,we present three efficient numerical formulas,namely the tempered L1 formula,the tempered L1-2 formula,and the tempered L2-1_(σ)formula,to approximate the Caputo-tempered fractional derivative of orderα∈(0,1).The truncation error of the tempered L1 formula is of order 2-α,and the tempered L1-2 formula and L2-1_(σ)formula are of order 3-α.As an application,we construct implicit schemes and implicit ADI schemes for one-dimensional and two-dimensional time-tempered fractional diffusion equations,respectively.Furthermore,the unconditional stability and convergence of two developed difference schemes with tempered L1 and L2-1_(σ)formulas are proved by the Fourier analysis method.Finally,we provide several numerical examples to demonstrate the correctness and effectiveness of the theoretical analysis.
基金The Project is supported by National Natural Science Foundation of China.
文摘In this paper. a quantitative estimate for Hermite interpolant to function ψ(z)=(z^m-β~m)~l on the ze- ros of (z^n-α~n)~r is obtained Using this estimate. a rather wide exiension of the theorem of Walsh is proved and five special cases of it are given.