In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strateg...In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.展开更多
The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riem...The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true.展开更多
Let M be a compact m-dimensional Riemannian manifold, let d denote, its diameter, -R(R>O) the lower bound of the Ricci curvature, and λ_1 the first eigerivalue for the Laplacian on M. Then there exists a constant ...Let M be a compact m-dimensional Riemannian manifold, let d denote, its diameter, -R(R>O) the lower bound of the Ricci curvature, and λ_1 the first eigerivalue for the Laplacian on M. Then there exists a constant C_m=max{2^(1/m-1),2^(1/2)}, Such that λ_1≥π~2/d^2·1/(2-(11)/(2π~2))+11/2π~2e^cm、展开更多
Let be a simply connected complete Riemannian manifold with dimension n≥3 . Suppose that the sectional curvature satisfies , where p is distance function from a base point of M, a, b are constants and . Then there ex...Let be a simply connected complete Riemannian manifold with dimension n≥3 . Suppose that the sectional curvature satisfies , where p is distance function from a base point of M, a, b are constants and . Then there exist harmonic functions on M .展开更多
L_(ν) operator is an important extrinsic differential operator of divergence type and has profound geometric settings.In this paper,we consider the clamped plate problem of L_(ν)^(2)operator on a bounded domain of t...L_(ν) operator is an important extrinsic differential operator of divergence type and has profound geometric settings.In this paper,we consider the clamped plate problem of L_(ν)^(2)operator on a bounded domain of the complete Riemannian manifolds.A general formula of eigenvalues of L_(ν)^(2) operator is established.Applying this general formula,we obtain some estimates for the eigenvalues with higher order on the complete Riemannian manifolds.As several fascinating applications,we discuss this eigenvalue problem on the complete translating solitons,minimal submanifolds on the Euclidean space,submanifolds on the unit sphere and projective spaces.In particular,we get a universal inequality with respect to the L_(II) operator on the translating solitons.Usually,it is very difficult to get universal inequalities for weighted Laplacian and even Laplacian on the complete Riemannian manifolds.Therefore,this work can be viewed as a new contribution to universal estimate.展开更多
Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be...We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be extended over time T. Moreover,we show that the condition is optimal in some sense.展开更多
The present paper is concerned with the existence of golbal smooth solutions for the homogeneous Dirichlet boundary value problem of the Darboux equation and the case degenerate onthe boundary is contained As some app...The present paper is concerned with the existence of golbal smooth solutions for the homogeneous Dirichlet boundary value problem of the Darboux equation and the case degenerate onthe boundary is contained As some applications the smooth isometric embeddings of positivelyand nonnegatively curved disks into R^3 are constructed.展开更多
The expression of the Maxwell magnetic monopole was employed to correlate the space to space projection that gives rise to the Gell-Mann standard model, and space to time projection which gives the leptons;and how doe...The expression of the Maxwell magnetic monopole was employed to correlate the space to space projection that gives rise to the Gell-Mann standard model, and space to time projection which gives the leptons;and how does it correlate to the Perelman mappings from the homogeneous 5D manifold to the Lorentz 4D manifold, together with correlating the physical consequences caused by the breaking of the Diagonal Long Range Order [DLRO] of the monopoles quantum states affected by the motion of massive particles in the Lorentz 4D boundary of the 5D manifold, which leads to gravitons and the gravity field via the General Relativity covariant Riemannian 4D curvatures metric equation.展开更多
In this paper the author establishes the following1.If M^n(n≥3)is a connected Riemannian manifold,then the sectional curvatureK(p),where p is any plane in T^x(M),is a function of at most n(n-1)/2 variables.Moreprecis...In this paper the author establishes the following1.If M^n(n≥3)is a connected Riemannian manifold,then the sectional curvatureK(p),where p is any plane in T^x(M),is a function of at most n(n-1)/2 variables.Moreprecisely,K(p)depends on at most n(n-1)/2 parameters of group SO(n).2.Lot M^n(n≥3)be a connected Riemannian manifold.If there exists a point x ∈ Msuch that the sectional curvature K(p)is independent of the plane p∈T_x(M),then M is aspace of constant curvature.This latter improves a well-known theorem of F.Schur.展开更多
In[4],Li proved that Yau’s conjecture“For non-compact connected completeRiemannian manifold M.M has no L;-eigenvalues if its sectional curvature K;≥0”holds if M can be represented as a Riemannian product M=R;×...In[4],Li proved that Yau’s conjecture“For non-compact connected completeRiemannian manifold M.M has no L;-eigenvalues if its sectional curvature K;≥0”holds if M can be represented as a Riemannian product M=R;×N.Acturally,heproved(without the restriction K;≥0)展开更多
In this paper,the authors consider a family of smooth immersions Ft : Mn→Nn+1of closed hypersurfaces in Riemannian manifold Nn+1with bounded geometry,moving by the Hkmean curvature flow.The authors show that if the s...In this paper,the authors consider a family of smooth immersions Ft : Mn→Nn+1of closed hypersurfaces in Riemannian manifold Nn+1with bounded geometry,moving by the Hkmean curvature flow.The authors show that if the second fundamental form stays bounded from below,then the Hkmean curvature flow solution with finite total mean curvature on a finite time interval [0,Tmax)can be extended over Tmax.This result generalizes the extension theorems in the paper of Li(see "On an extension of the Hkmean curvature flow,Sci.China Math.,55,2012,99–118").展开更多
In this letter we prove several global rigidity theorems for hypersurfaces in Riemannian manifold of constant curvature, which are generalizations of some wellknown theorems for convex hypersurfaces in En+1, Sn+1 and ...In this letter we prove several global rigidity theorems for hypersurfaces in Riemannian manifold of constant curvature, which are generalizations of some wellknown theorems for convex hypersurfaces in En+1, Sn+1 and Hn+1. Our main results are as follows:展开更多
Let Sn+p be a unit (n+p) sphere and f: M→Sn+p an isometric immersion of an n-ditmensional Riemannian manifold M into Sn+p, If the length of the mean curvature vector ξ of f(M) is constant and the vector ξ/|ξ| ...Let Sn+p be a unit (n+p) sphere and f: M→Sn+p an isometric immersion of an n-ditmensional Riemannian manifold M into Sn+p, If the length of the mean curvature vector ξ of f(M) is constant and the vector ξ/|ξ| is parallel im the normal bundle, then f(M) is called the submanifold展开更多
In a previous paper(Jiang and Yang(2021)),we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimensions greater than...In a previous paper(Jiang and Yang(2021)),we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimensions greater than or equal to 6.The purpose of the present paper is to use a different technique to exhibit a family of complete I-dimensional(I≥5)Riemannian manifolds of positive Ricci curvature,quadratically asymptotically nonnegative sectional curvature,and certain infinite Betti numbers bj(2≤j≤I-2).展开更多
文摘In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.
文摘The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true.
文摘Let M be a compact m-dimensional Riemannian manifold, let d denote, its diameter, -R(R>O) the lower bound of the Ricci curvature, and λ_1 the first eigerivalue for the Laplacian on M. Then there exists a constant C_m=max{2^(1/m-1),2^(1/2)}, Such that λ_1≥π~2/d^2·1/(2-(11)/(2π~2))+11/2π~2e^cm、
文摘Let be a simply connected complete Riemannian manifold with dimension n≥3 . Suppose that the sectional curvature satisfies , where p is distance function from a base point of M, a, b are constants and . Then there exist harmonic functions on M .
基金Supported by the National Natural Science Foundation of China(Grant Nos.11861036 and 11826213)the Natural Science Foundation of Jiangxi Province(Grant No.20224BAB201002)。
文摘L_(ν) operator is an important extrinsic differential operator of divergence type and has profound geometric settings.In this paper,we consider the clamped plate problem of L_(ν)^(2)operator on a bounded domain of the complete Riemannian manifolds.A general formula of eigenvalues of L_(ν)^(2) operator is established.Applying this general formula,we obtain some estimates for the eigenvalues with higher order on the complete Riemannian manifolds.As several fascinating applications,we discuss this eigenvalue problem on the complete translating solitons,minimal submanifolds on the Euclidean space,submanifolds on the unit sphere and projective spaces.In particular,we get a universal inequality with respect to the L_(II) operator on the translating solitons.Usually,it is very difficult to get universal inequalities for weighted Laplacian and even Laplacian on the complete Riemannian manifolds.Therefore,this work can be viewed as a new contribution to universal estimate.
基金Supported by National Natural Science Foundation of China(Grant No.11201346)
文摘Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
基金supported by National Natural Science Foundation of China (Grant Nos. 10771187, 11071211)the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China+1 种基金the Natural Science Foundation of Zhejiang Province (Grant No. 101037)the China Postdoctoral Science Foundation (Grant No. 20090461379)
文摘We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be extended over time T. Moreover,we show that the condition is optimal in some sense.
文摘The present paper is concerned with the existence of golbal smooth solutions for the homogeneous Dirichlet boundary value problem of the Darboux equation and the case degenerate onthe boundary is contained As some applications the smooth isometric embeddings of positivelyand nonnegatively curved disks into R^3 are constructed.
文摘The expression of the Maxwell magnetic monopole was employed to correlate the space to space projection that gives rise to the Gell-Mann standard model, and space to time projection which gives the leptons;and how does it correlate to the Perelman mappings from the homogeneous 5D manifold to the Lorentz 4D manifold, together with correlating the physical consequences caused by the breaking of the Diagonal Long Range Order [DLRO] of the monopoles quantum states affected by the motion of massive particles in the Lorentz 4D boundary of the 5D manifold, which leads to gravitons and the gravity field via the General Relativity covariant Riemannian 4D curvatures metric equation.
基金Projects Supported by the Natural Science Funds of china.
文摘In this paper the author establishes the following1.If M^n(n≥3)is a connected Riemannian manifold,then the sectional curvatureK(p),where p is any plane in T^x(M),is a function of at most n(n-1)/2 variables.Moreprecisely,K(p)depends on at most n(n-1)/2 parameters of group SO(n).2.Lot M^n(n≥3)be a connected Riemannian manifold.If there exists a point x ∈ Msuch that the sectional curvature K(p)is independent of the plane p∈T_x(M),then M is aspace of constant curvature.This latter improves a well-known theorem of F.Schur.
文摘In[4],Li proved that Yau’s conjecture“For non-compact connected completeRiemannian manifold M.M has no L;-eigenvalues if its sectional curvature K;≥0”holds if M can be represented as a Riemannian product M=R;×N.Acturally,heproved(without the restriction K;≥0)
基金supported by the National Natural Science Foundation of China(Nos.11301399,11126189,11171259,11126190)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120141120058)+1 种基金the China Postdoctoral Science Foundation(No.20110491212)the Fundamental Research Funds for the Central Universities(Nos.2042011111054,20420101101025)
文摘In this paper,the authors consider a family of smooth immersions Ft : Mn→Nn+1of closed hypersurfaces in Riemannian manifold Nn+1with bounded geometry,moving by the Hkmean curvature flow.The authors show that if the second fundamental form stays bounded from below,then the Hkmean curvature flow solution with finite total mean curvature on a finite time interval [0,Tmax)can be extended over Tmax.This result generalizes the extension theorems in the paper of Li(see "On an extension of the Hkmean curvature flow,Sci.China Math.,55,2012,99–118").
文摘In this letter we prove several global rigidity theorems for hypersurfaces in Riemannian manifold of constant curvature, which are generalizations of some wellknown theorems for convex hypersurfaces in En+1, Sn+1 and Hn+1. Our main results are as follows:
文摘Let Sn+p be a unit (n+p) sphere and f: M→Sn+p an isometric immersion of an n-ditmensional Riemannian manifold M into Sn+p, If the length of the mean curvature vector ξ of f(M) is constant and the vector ξ/|ξ| is parallel im the normal bundle, then f(M) is called the submanifold
基金supported by National Natural Science Foundation of China(Grant Nos.11571228 and 12071283)fund of Shanghai Normal University(Grant No.SK202002)。
文摘In a previous paper(Jiang and Yang(2021)),we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimensions greater than or equal to 6.The purpose of the present paper is to use a different technique to exhibit a family of complete I-dimensional(I≥5)Riemannian manifolds of positive Ricci curvature,quadratically asymptotically nonnegative sectional curvature,and certain infinite Betti numbers bj(2≤j≤I-2).