This paper presents a novel regular Quasi-Cyclic (QC)Low Density Parity Check (LDPC)codes with columnweight three and girth at least eight.These are designed on the basis of combinatorial design in which subsets appli...This paper presents a novel regular Quasi-Cyclic (QC)Low Density Parity Check (LDPC)codes with columnweight three and girth at least eight.These are designed on the basis of combinatorial design in which subsets applied for the construction of circulant matrices are determined by a particular subset.Considering the nonexistence of cycles four and six in the structure of the parity check matrix,a bound for their minimum weight is proposed.The simtdations conducted confirm that without applying a masking technique,the newly implemented codes have a performance similar to or better than other well-known codes.This is evident in the waterfall region, while their error floor at very low Bit Error Rate (BER)is expected.展开更多
A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and...A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.展开更多
In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some ne...In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated.展开更多
Quasi-cyclic codes of length mn over Z4 are shown to be equivalent to A-submodules of A^n, where A = Z4[x]/(x^m - 1). In the case of m being odd, all quasi-cyclic codes are shown to be decomposable into the direct s...Quasi-cyclic codes of length mn over Z4 are shown to be equivalent to A-submodules of A^n, where A = Z4[x]/(x^m - 1). In the case of m being odd, all quasi-cyclic codes are shown to be decomposable into the direct sum of a fixed number of cyclic irreducible A-submodules. Finally the distinct quasi-cyclic codes as well as some specific subclasses are enumerated.展开更多
The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of length...The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of lengths 4,6,8,and 10 are analyzed. Then these cycles are classified into sixteen categories,each of which can be expressed as an ordered block sequence,or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fpwho has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner(5,7) QC LDPC codes.展开更多
Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences o...Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences on decoding performance as well as hardware implementation complexity. To reduce hardware implementation complexity, we design a quasi-cyclic mapping matrix for RPC codes. Compared with other construction approaches, our design gets rid of data filter component, thus reducing chip area 7284.95 um2, and power consumption 331.46 uW in 0.13 um fabrication. Our simulation results show that our method does not cause any performance loss and even gets 0.2 dB to 0.5 dB gain at BER 10-4.展开更多
Low-density parity-check(LDPC)codes are not only capacity-approaching,but also greatly suitable for high-throughput implementation.Thus,they are the most popular codes for high-speed data transmission in the past two ...Low-density parity-check(LDPC)codes are not only capacity-approaching,but also greatly suitable for high-throughput implementation.Thus,they are the most popular codes for high-speed data transmission in the past two decades.Thanks to the low-density property of their parity-check matrices,the optimal maximum a posteriori probability decoding of LDPC codes can be approximated by message-passing decoding with linear complexity and highly parallel nature.Then,it reveals that the approximation has to carry on Tanner graphs without short cycles and small trapping sets.Last,it demonstrates that well-designed LDPC codes with the aid of computer simulation and asymptotic analysis tools are able to approach the channel capacity.Moreover,quasi-cyclic(QC)structure is introduced to significantly facilitate their high-throughput implementation.In fact,compared to the other capacity-approaching codes,QC-LDPC codes can provide better area-efficiency and energy-efficiency.As a result,they are widely applied in numerous communication systems,e.g.,Landsat satellites,Chang’e Chinese Lunar mission,5G mobile communications and so on.What’s more,its extension to non-binary Galois fields has been adopted as the channel coding scheme for BeiDou navigation satellite system.展开更多
针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长...针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长和码率参数的设计具有较好的灵活性。同时表明在加性高斯白噪声(AWGN)信道和置信传播(BP)译码算法下,该方法构造的码字在码长为1008、误比特率为510-时,信噪比优于渐进边增长(PEG)码近0.3 d B。展开更多
A modified Benes network is proposed to be used as an optimal shuffle network in worldwide interoperability for microwave access (WiMAX) low density parity check (LDPC) decoders, When the size of the input is not ...A modified Benes network is proposed to be used as an optimal shuffle network in worldwide interoperability for microwave access (WiMAX) low density parity check (LDPC) decoders, When the size of the input is not a power of two, the modified Benes network can achieve the most optimal performance. This modified Benes network is non-blocking and can perform any sorts of permutations, so it can support 19 modes specified in the WiMAX system. Furthermore, an efficient algorithm to generate the control signals for all the 2 × 2 switches in this network is derived, which can reduce the hardware complexity and overall latency of the modified Benes network. Synthesis results show that the proposed control signal generator can save 25.4% chip area and the overall network latency can be reduced by 36. 2%.展开更多
An improved Euclidean geometry approach to design quasi-cyclic (QC) Low-density parity-check (LDPC) codes with high-rate and low error floor is presented. The constructed QC-LDPC codes with high-rate have lower er...An improved Euclidean geometry approach to design quasi-cyclic (QC) Low-density parity-check (LDPC) codes with high-rate and low error floor is presented. The constructed QC-LDPC codes with high-rate have lower error floor than the original codes. The distribution of the minimum weight codeword is analyzed, and a sufficient existence condition of the minimum weight codeword is found. Simulations show that a lot of QC-LDPC codes with lower error floor can be designed by reducing the number of the minimum weight codewords satisfying this sufficient condition.展开更多
Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first...Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.展开更多
A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filt...A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.展开更多
This paper discusses the enumeration of 1-generator quasi-cyclic codes and describes an algorithm which will obtain one, and only one, generator for each 1-generator quasi-cyclic code.
The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead ...The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead to the bit error rate (BER) performance of QC-LDPC codes being much poorer than that of randomly constructed LDPC codes even decoding failure. To solve the problem, some theorems of the specific chosen parity-check matrix of QC-LDPC codes without small stopping sets and small girth are proposed. A novel construction for QC-LDPC codes with long block lengths is presented by multiplying mmin or the multiple of mmin, which is the minimum order of the identity matrix for the chosen parity-check matrix. The simulation results show that the specific chosen parity-check matrix of QC-LDPC codes can effectively avoid specified stopping sets and small girth and exhibit excellent BER performance than random LDPC codes with the same longer codes length.展开更多
In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC compon...In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.展开更多
A novel low-complexity weighted symbol-flipping algorithm with flipping patterns to decode nonbinary low-density parity-check codes is proposed. The proposed decoding procedure updates the hard-decision received symbo...A novel low-complexity weighted symbol-flipping algorithm with flipping patterns to decode nonbinary low-density parity-check codes is proposed. The proposed decoding procedure updates the hard-decision received symbol vector iteratively in search of a valid codeword in the symbol vector space. Only one symbol is flipped in each iteration, and symbol flipping function, which is employed as the symbol flipping metric, combines the number of failed checks and the reliabilities of the received bits and calculated symbols. A scheme to avoid infinite loops and select one symbol to flip in high order Galois field search is also proposed. The design of flipping pattern's order and depth, which is dependent of the computational requirement and error performance, is also proposed and exemplified. Simulation results show that the algorithm achieves an appealing tradeoff between performance and computational requirement over relatively low Galois field for short to medium code length.展开更多
文摘This paper presents a novel regular Quasi-Cyclic (QC)Low Density Parity Check (LDPC)codes with columnweight three and girth at least eight.These are designed on the basis of combinatorial design in which subsets applied for the construction of circulant matrices are determined by a particular subset.Considering the nonexistence of cycles four and six in the structure of the parity check matrix,a bound for their minimum weight is proposed.The simtdations conducted confirm that without applying a masking technique,the newly implemented codes have a performance similar to or better than other well-known codes.This is evident in the waterfall region, while their error floor at very low Bit Error Rate (BER)is expected.
基金Supported by the National Key Basic Research Program (973) Project (No. 2010CB328300)the 111 Project (No. B08038)
文摘A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60773085 and 60801051)the NSFC-KOSEF International Collaborative Research Funds (Grant Nos 60811140346 and F01-2008-000-10021-0)
文摘In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated.
基金the National Natural Science Foundation of China (60603016)
文摘Quasi-cyclic codes of length mn over Z4 are shown to be equivalent to A-submodules of A^n, where A = Z4[x]/(x^m - 1). In the case of m being odd, all quasi-cyclic codes are shown to be decomposable into the direct sum of a fixed number of cyclic irreducible A-submodules. Finally the distinct quasi-cyclic codes as well as some specific subclasses are enumerated.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61372074 and 91438101)the National High Technology Research and Development Program of China(Grant No.2015AA01A709)
文摘The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of lengths 4,6,8,and 10 are analyzed. Then these cycles are classified into sixteen categories,each of which can be expressed as an ordered block sequence,or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fpwho has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner(5,7) QC LDPC codes.
文摘Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences on decoding performance as well as hardware implementation complexity. To reduce hardware implementation complexity, we design a quasi-cyclic mapping matrix for RPC codes. Compared with other construction approaches, our design gets rid of data filter component, thus reducing chip area 7284.95 um2, and power consumption 331.46 uW in 0.13 um fabrication. Our simulation results show that our method does not cause any performance loss and even gets 0.2 dB to 0.5 dB gain at BER 10-4.
基金supported in part by the National Natural Science Foundation of China(No.62071026,No.62201152 and No.61941106)the Natural Science Foundation of Fujian Province(No.2021J05034)Key Project of Science and Technology Innovation of Fujian Province(No.2021G02006)。
文摘Low-density parity-check(LDPC)codes are not only capacity-approaching,but also greatly suitable for high-throughput implementation.Thus,they are the most popular codes for high-speed data transmission in the past two decades.Thanks to the low-density property of their parity-check matrices,the optimal maximum a posteriori probability decoding of LDPC codes can be approximated by message-passing decoding with linear complexity and highly parallel nature.Then,it reveals that the approximation has to carry on Tanner graphs without short cycles and small trapping sets.Last,it demonstrates that well-designed LDPC codes with the aid of computer simulation and asymptotic analysis tools are able to approach the channel capacity.Moreover,quasi-cyclic(QC)structure is introduced to significantly facilitate their high-throughput implementation.In fact,compared to the other capacity-approaching codes,QC-LDPC codes can provide better area-efficiency and energy-efficiency.As a result,they are widely applied in numerous communication systems,e.g.,Landsat satellites,Chang’e Chinese Lunar mission,5G mobile communications and so on.What’s more,its extension to non-binary Galois fields has been adopted as the channel coding scheme for BeiDou navigation satellite system.
文摘针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长和码率参数的设计具有较好的灵活性。同时表明在加性高斯白噪声(AWGN)信道和置信传播(BP)译码算法下,该方法构造的码字在码长为1008、误比特率为510-时,信噪比优于渐进边增长(PEG)码近0.3 d B。
基金The National Natural Science Foundation of China(No.60871079)
文摘A modified Benes network is proposed to be used as an optimal shuffle network in worldwide interoperability for microwave access (WiMAX) low density parity check (LDPC) decoders, When the size of the input is not a power of two, the modified Benes network can achieve the most optimal performance. This modified Benes network is non-blocking and can perform any sorts of permutations, so it can support 19 modes specified in the WiMAX system. Furthermore, an efficient algorithm to generate the control signals for all the 2 × 2 switches in this network is derived, which can reduce the hardware complexity and overall latency of the modified Benes network. Synthesis results show that the proposed control signal generator can save 25.4% chip area and the overall network latency can be reduced by 36. 2%.
基金supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (11JK1007)the Program for Young Teachers in Xi’an University of Posts and Telecommunications (0001286)the National Basic Research Program of China (2012CB328300)
文摘An improved Euclidean geometry approach to design quasi-cyclic (QC) Low-density parity-check (LDPC) codes with high-rate and low error floor is presented. The constructed QC-LDPC codes with high-rate have lower error floor than the original codes. The distribution of the minimum weight codeword is analyzed, and a sufficient existence condition of the minimum weight codeword is found. Simulations show that a lot of QC-LDPC codes with lower error floor can be designed by reducing the number of the minimum weight codewords satisfying this sufficient condition.
基金The National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the Doctoral Program of Higher Education (20050004016)
文摘A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.
基金The research is supported by the Tian Yuan Foundation under Grant No. K1107320 and the National Natural Science Foundation of China under Grant No, K1107645,Acknowledgement The authors wish to thank their supervisor Dr. Jie Cui for suggesting several corrections which improved the final manuscript.
文摘This paper discusses the enumeration of 1-generator quasi-cyclic codes and describes an algorithm which will obtain one, and only one, generator for each 1-generator quasi-cyclic code.
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the Doctoral Program of Higher Education (20050004016)
文摘The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead to the bit error rate (BER) performance of QC-LDPC codes being much poorer than that of randomly constructed LDPC codes even decoding failure. To solve the problem, some theorems of the specific chosen parity-check matrix of QC-LDPC codes without small stopping sets and small girth are proposed. A novel construction for QC-LDPC codes with long block lengths is presented by multiplying mmin or the multiple of mmin, which is the minimum order of the identity matrix for the chosen parity-check matrix. The simulation results show that the specific chosen parity-check matrix of QC-LDPC codes can effectively avoid specified stopping sets and small girth and exhibit excellent BER performance than random LDPC codes with the same longer codes length.
基金supported by National Natural Science Foundation of China(No.61571061)
文摘In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.
文摘A novel low-complexity weighted symbol-flipping algorithm with flipping patterns to decode nonbinary low-density parity-check codes is proposed. The proposed decoding procedure updates the hard-decision received symbol vector iteratively in search of a valid codeword in the symbol vector space. Only one symbol is flipped in each iteration, and symbol flipping function, which is employed as the symbol flipping metric, combines the number of failed checks and the reliabilities of the received bits and calculated symbols. A scheme to avoid infinite loops and select one symbol to flip in high order Galois field search is also proposed. The design of flipping pattern's order and depth, which is dependent of the computational requirement and error performance, is also proposed and exemplified. Simulation results show that the algorithm achieves an appealing tradeoff between performance and computational requirement over relatively low Galois field for short to medium code length.