期刊文献+
共找到740篇文章
< 1 2 37 >
每页显示 20 50 100
Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs
1
作者 Lianghao Hua Jianfeng Zhang +1 位作者 Dejie Li Xiaobo Xi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2129-2157,共29页
With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rej... With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance. 展开更多
关键词 Radial basis function neural network plant protection unmanned aerial vehicle active disturbance rejection controller fractional gradient descent algorithm
下载PDF
The Convergence of the Steepest Descent Algorithm for D.C.Optimization 被引量:1
2
作者 SONG Chun-ling XIA Zun-quan 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第1期131-136,共6页
Some properties of a class of quasi-differentiable functions(the difference of two finite convex functions) are considered in this paper. And the convergence of the steepest descent algorithm for unconstrained and c... Some properties of a class of quasi-differentiable functions(the difference of two finite convex functions) are considered in this paper. And the convergence of the steepest descent algorithm for unconstrained and constrained quasi-differentiable programming is proved. 展开更多
关键词 nonsmooth optimization D. C. optimization upper semi-continuous lower semi-continuous steepest descent algorithm CONVERGENCE
下载PDF
Channel estimation for MIMO-OFDM systems using steepest-descent algorithm 被引量:1
3
作者 L UXin XU Jun 《通讯和计算机(中英文版)》 2009年第11期64-68,共5页
关键词 最速下降算法 信道估计 OFDM系统 MIMO 快衰落信道 最速下降法 估计方法 分配模式
下载PDF
Gradient Descent Algorithm for Small UAV Parameter Estimation System
4
作者 Guo Jiandong Liu Qingwen Wang Kang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第6期680-687,共8页
A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and... A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively. 展开更多
关键词 gradient descent algorithm attitude estimation QUATERNIONS small unmanned aerial vehicle(UAV)
下载PDF
Merit functions for nonsmooth complementarity problems and related descent algorithm
5
作者 DU Shou-qiang GAO Yan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第1期78-84,共7页
Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal... Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal with nonlinear complementarity problem where the underlying function is assumed to be a continuous but not necessarily locally Lipschitzian map and gives a descent algorithm for solving the nonsmooth continuous complementarity problems. In addition, the global convergence of the derivative free descent algorithm is also proved. 展开更多
关键词 Nonsmooth complementarity problem merit function nonsmooth continuous map descent algorithm.
下载PDF
Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification
6
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman Walid El-Shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2791-2814,共24页
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri... Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning. 展开更多
关键词 Association rule mining data classification healthcare data machine learning parameter tuning data mining feature selection MLARMC-HDMS COA stochastic gradient descent Apriori algorithm
下载PDF
分布式训练系统及其优化算法综述 被引量:3
7
作者 王恩东 闫瑞栋 +1 位作者 郭振华 赵雅倩 《计算机学报》 EI CAS CSCD 北大核心 2024年第1期1-28,共28页
人工智能利用各种优化技术从海量训练样本中学习关键特征或知识以提高解的质量,这对训练方法提出了更高要求.然而,传统单机训练无法满足存储与计算性能等方面的需求.因此,利用多个计算节点协同的分布式训练系统成为热点研究方向之一.本... 人工智能利用各种优化技术从海量训练样本中学习关键特征或知识以提高解的质量,这对训练方法提出了更高要求.然而,传统单机训练无法满足存储与计算性能等方面的需求.因此,利用多个计算节点协同的分布式训练系统成为热点研究方向之一.本文首先阐述了单机训练面临的主要挑战.其次,分析了分布式训练系统亟需解决的三个关键问题.基于上述问题归纳了分布式训练系统的通用框架与四个核心组件.围绕各个组件涉及的技术,梳理了代表性研究成果.在此基础之上,总结了基于并行随机梯度下降算法的中心化与去中心化架构研究分支,并对各研究分支优化算法与应用进行综述.最后,提出了未来可能的研究方向. 展开更多
关键词 分布式训练系统 (去)中心化架构 中心化架构算法 (异)同步算法 并行随机梯度下降 收敛速率
下载PDF
基于动作时限曲线拟合思想的含DG型配电网后备保护新方法
8
作者 黄景光 赵珩 +5 位作者 李浙栋 张宇鹏 梅诺男 孙佳航 张员宁 翁汉琍 《电网技术》 EI CSCD 北大核心 2024年第5期2199-2206,I0115,共9页
分布式电源(distributed generation,DG)的接入可能会改变电力系统的短路电流特性,从而影响到反时限过流保护的选择性和配合关系。为此,提出一种基于动作时限曲线拟合思想的含DG型配电网后备保护新方法。从配电网主保护和后备保护的动... 分布式电源(distributed generation,DG)的接入可能会改变电力系统的短路电流特性,从而影响到反时限过流保护的选择性和配合关系。为此,提出一种基于动作时限曲线拟合思想的含DG型配电网后备保护新方法。从配电网主保护和后备保护的动作时间差入手,建立曲线拟合模型,并运用梯度下降法对反时限过流保护的动作时限曲线进行优化。通过在优化整定计算中考虑保护的选择性以及DG接入所带来的影响,使优化参数适用于配电网中各分段位置。然后,在配电网中设置两相、三相短路故障,并根据故障位置、类型进行整定参数再调整,最终得到参数的全局最优解。基于PSCAD/EMTDC仿真软件进行仿真分析,验证了所提方法的有效性和实用性。 展开更多
关键词 反时限过流保护 分布式电源 梯度下降算法 曲线拟合 速动性 选择性
下载PDF
针对频率失调问题的挖掘机ANC系统优化设计
9
作者 袁守利 陈际 +1 位作者 刘志恩 吴方博 《传感技术学报》 CAS CSCD 北大核心 2024年第9期1563-1570,共8页
在进行窄带主动噪声控制(Narrowband Active Noise Control,NANC)过程中,常采用非声学传感器来获取参考信号,但非声学传感器会因老化和疲劳积累产生误差,使NANC系统频率失调(Frequency Mismatch,FM),导致降噪性能下降,甚至失效。针对此... 在进行窄带主动噪声控制(Narrowband Active Noise Control,NANC)过程中,常采用非声学传感器来获取参考信号,但非声学传感器会因老化和疲劳积累产生误差,使NANC系统频率失调(Frequency Mismatch,FM),导致降噪性能下降,甚至失效。针对此问题,提出一种基于自适应补偿(Adaptive Compensation,AC)的控制方案,该方案利用滤波增强信号与原始信号的相关性,设计一个频率跟踪质量评价因子,使该方案能更精准地实现对频率的追踪,以取得更优的FM补偿效果。通过仿真对比发现,与传统解决方案相比,AC方案能应对更大FM,使NANC系统具有更好的稳定性,初步验证了算法的优越性。进一步开展台架试验与实机实验,试验结果表明:当FM达到10%,经AC方案优化的NANC系统对挖掘机2、4、6阶噪声降噪量仍达到了15.2 dB、24.1 dB、21.2 dB,进一步验证了AC方案的性能。同时,也表明所提AC方案能有效实现对FM的控制,具有较高的实用价值。 展开更多
关键词 窄带主动噪声控制 频率失调 延时陷波算法 最速下降法 非声学传感器
下载PDF
动量余弦相似度梯度优化图卷积神经网络
10
作者 闫建红 段运会 《计算机工程与应用》 CSCD 北大核心 2024年第14期133-143,共11页
传统梯度下降算法仅对历史梯度进行指数加权累加,没有利用梯度的局部变化,造成优化过程越过全局最优解,即使收敛到最优解也会在最优解附近震荡,其训练图卷积神经网络会造成收敛速度慢、测试准确度低。利用相邻两次梯度的余弦相似度,动... 传统梯度下降算法仅对历史梯度进行指数加权累加,没有利用梯度的局部变化,造成优化过程越过全局最优解,即使收敛到最优解也会在最优解附近震荡,其训练图卷积神经网络会造成收敛速度慢、测试准确度低。利用相邻两次梯度的余弦相似度,动态调整学习率,提出余弦相似度梯度下降(SimGrad)算法。为进一步提升图卷积神经网络训练的收敛速度和测试准确度,减少震荡,结合动量思想提出动量余弦相似度梯度下降(NSimGrad)算法。通过收敛性分析,证明SimGrad算法、NSimGrad算法都具有O(√T)的遗憾界。在构建的三个非凸函数进行测试,并结合图卷积神经网络在四个数据集上进行实验,结果表明SimGrad算法保证了图卷积神经网络的收敛性,NSimGrad算法进一步提高图卷积神经网络训练的收敛速度和测试准确度,SimGrad、NSimGrad算法相较于Adam、Nadam具有更好的全局收敛性和优化能力。 展开更多
关键词 梯度下降类算法 余弦相似度 图卷积神经网络 遗憾界 全局收敛性
下载PDF
激光相干合成系统中SPGD算法的分阶段自适应优化
11
作者 郑文慧 祁家琴 +6 位作者 江文隽 谭贵元 胡奇琪 高怀恩 豆嘉真 邸江磊 秦玉文 《红外与激光工程》 EI CSCD 北大核心 2024年第9期303-315,共13页
为改善传统随机并行梯度下降(Stochastic Parallel Gradient Descent,SPGD)算法应用于大规模激光相干合成系统时收敛速度慢且易陷入局部最优解的情况,提出了一种分阶段自适应增益SPGD算法-Staged SPGD算法。该算法根据性能评价函数值,... 为改善传统随机并行梯度下降(Stochastic Parallel Gradient Descent,SPGD)算法应用于大规模激光相干合成系统时收敛速度慢且易陷入局部最优解的情况,提出了一种分阶段自适应增益SPGD算法-Staged SPGD算法。该算法根据性能评价函数值,在不同收敛时期采用不同策略对增益系数进行自适应调整,同时引入含梯度更新因子的控制电压更新策略,在加快收敛速度的同时减少算法陷入局部极值的概率。实验结果表明:在19路激光相干合成系统中,与传统SPGD算法相比,Staged SPGD算法的收敛速度提升了36.84%,针对不同频率和幅度的相位噪声,算法也具有较优的收敛效果,且稳定性得到显著提升。此外,将Staged SPGD算法直接应用于37、61、91路相干合成系统时,Staged SPGD算法相比传统SPGD算法收敛速度分别提升了37.88%、40.85%和41.10%,提升效果随相干合成单元数增加而更加显著,表明该算法在收敛速度、稳定性和扩展性方面均具有一定优势,具备扩展到大规模相干合成系统的潜力。 展开更多
关键词 激光相干合成 相位控制 随机并行梯度下降算法 SPGD算法
下载PDF
基于有效性分析的自组织模糊神经网络建模方法
12
作者 王雪峰 李文静 乔俊飞 《控制工程》 CSCD 北大核心 2024年第3期463-469,共7页
提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络... 提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。 展开更多
关键词 有效性分析 自组织模糊神经网络 梯度下降算法 网络建模
下载PDF
基于知识模糊迁徙的城市污水处理膜污染决策
13
作者 何政 赵楠 +5 位作者 李杰 陈行行 阜崴 顾剑 韩红桂 刘峥 《北京工业大学学报》 CAS CSCD 北大核心 2024年第3期299-306,共8页
针对城市污水处理膜污染难以精准决策的问题,提出一种基于知识模糊迁徙的膜污染决策方法。首先,结合城市污水处理运行过程数据和运行经验,利用模糊规则的形式实现膜污染决策知识的表达;其次,提出一种知识重构机制(knowledge reconstruct... 针对城市污水处理膜污染难以精准决策的问题,提出一种基于知识模糊迁徙的膜污染决策方法。首先,结合城市污水处理运行过程数据和运行经验,利用模糊规则的形式实现膜污染决策知识的表达;其次,提出一种知识重构机制(knowledge reconstruction mechanism,KRM),动态平衡源域与目标域之间的准确性和多样性,并采用知识迁徙的方法完成决策知识重构;最后,建立一种基于数据和知识驱动的区间二型模糊神经网络(data-knowledge-driven interval type-2 fuzzy neural network,DK-IT2FNN)的决策模型,利用模糊规则设计模型参数,采用迁徙梯度下降算法动态调整网络权值,提高决策精度。实验结果表明,该模型能够实现膜污染的精准决策。 展开更多
关键词 城市污水处理 膜污染 知识重构机制(knowledge reconstruction mechanism KRM) 模糊神经网络 模糊迁徙 梯度下降算法
下载PDF
基于动量梯度下降的回声消除算法
14
作者 陈张良 卢敏 曾桂根 《现代电子技术》 北大核心 2024年第9期71-77,共7页
针对极端环境话音系统下声学回波影响工作人员正常施工,且常规声学回声消除算法收敛速度慢的问题,提出一种基于动量梯度下降的基于l0范数的改进系数成比例归一化最小均方误差算法(L0⁃IPNLMS)。该算法将动量因子引入L0⁃IPNLMS算法中,解... 针对极端环境话音系统下声学回波影响工作人员正常施工,且常规声学回声消除算法收敛速度慢的问题,提出一种基于动量梯度下降的基于l0范数的改进系数成比例归一化最小均方误差算法(L0⁃IPNLMS)。该算法将动量因子引入L0⁃IPNLMS算法中,解决在算法运行过程中梯度下降时梯度摆动幅度可能过大的问题,也提高了自适应滤波器的收敛速度,且残余回声下降明显,声学回波抑制效果更好。仿真实验表明,与L0⁃IPNLMS算法相比,新算法在模拟随机多音信号与真实语音信号输入时,均方误差(MSE)可以降低3.47 dB和3.69 dB,回波抑制比(ERLE)提高了3.46 dB和3.68 dB,在低信噪比情况下,使用新算法对真实语音信号进行回声消除,收敛速度高于L0⁃IPNLMS等算法,且收敛效果有明显改进。 展开更多
关键词 回声消除算法 动量梯度下降 极端环境话音通信系统 归一化 最小均方算法 收敛速度
下载PDF
基于鲁棒控制的自适应分数阶梯度优化算法设计
15
作者 刘佳旭 陈嵩 +2 位作者 蔡声泽 许超 褚健 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第7期1187-1196,共10页
当目标函数是强凸函数时,一般的分数阶梯度下降法不能够使函数收敛到最小值点,只能收敛到一个包含最小值点的区域内或者是发散的.为了解决这个问题,本文提出了自适应分数阶梯度下降法(AFOGD)和自适应分数阶加速梯度下降法(AFOAGD)两种... 当目标函数是强凸函数时,一般的分数阶梯度下降法不能够使函数收敛到最小值点,只能收敛到一个包含最小值点的区域内或者是发散的.为了解决这个问题,本文提出了自适应分数阶梯度下降法(AFOGD)和自适应分数阶加速梯度下降法(AFOAGD)两种新的优化算法.受到鲁棒控制理论中二次约束和李雅普诺夫稳定性理论的启发,建立了一个线性矩阵不等式去分析所提出的算法的收敛性.当目标函数是L-光滑且m-强凸时,算法可以达到R线性收敛.最后几个数值仿真证明了算法的有效性和优越性. 展开更多
关键词 梯度下降法 自适应算法 鲁棒控制 分数阶微积分 加速算法
下载PDF
基于BP算法的装配式建筑钢结构表观病害检测 被引量:1
16
作者 曹园 《太原学院学报(自然科学版)》 2024年第1期7-12,共6页
装配式建筑钢结构表观病害检测过程中,受环境和主观因素影响的细小病害检测性能较低。因此,利用BP算法,设计一种新的装配式建筑钢结构表观病害检测方法。在检测车上搭载工业相机,采集装配式建筑钢结构图像,通过线性灰度拉伸、非线性滤... 装配式建筑钢结构表观病害检测过程中,受环境和主观因素影响的细小病害检测性能较低。因此,利用BP算法,设计一种新的装配式建筑钢结构表观病害检测方法。在检测车上搭载工业相机,采集装配式建筑钢结构图像,通过线性灰度拉伸、非线性滤波等方式,进行图像预处理。通过图像灰度共生矩阵,计算出图像纹理特征参数。依托于BP算法,构建包含数个3层神经子网络的表观病害检测模型,并通过自适应调整和训练,实现复杂环境下的装配式建筑钢结构表观病害准确检测。实验结果表明:所提方法输出检测结果的综合指数F1值在0.9以上,满足表观病害检测质量要求,优化了检测质量。 展开更多
关键词 BP算法 装配式建筑 钢结构 表观病害 梯度下降法
下载PDF
基于PSO-BP的抗乳腺癌药物毒性研究 被引量:1
17
作者 秦传东 廖奥林 《计算机仿真》 2024年第4期320-324,共5页
为解决新药研发过程中药物的毒性难以准确预估的问题,利用计算机技术,提出一种基于粒子群算法(PSO)优化BP神经网络的二分类预测模型。通过互信息的方法从729个分子描述符中筛选出重要度最高的20特征作为自变量,以药物的毒性值作为因变量... 为解决新药研发过程中药物的毒性难以准确预估的问题,利用计算机技术,提出一种基于粒子群算法(PSO)优化BP神经网络的二分类预测模型。通过互信息的方法从729个分子描述符中筛选出重要度最高的20特征作为自变量,以药物的毒性值作为因变量,在BP神经网络模型的基础上,首先使用不同的梯度下降算法计算模型的准确率,发现批量梯度下降算法对BP模型的拟合效果较好;其次利用动态变权重的粒子群算法对BP神经网络模型的权重和阈值进行优化选择,结合BP神经网络、SVM和KNN模型进行对比实验,结果显示,PSO-BP模型的准确率、精确率、召回率和F1值明显高于其它模型。因此,PSO-BP模型是一种对抗乳腺癌药物毒性有效预测的方法。 展开更多
关键词 粒子群算法 互信息 梯度下降算法
下载PDF
面向约束多目标优化的进化计算与梯度下降联合优化算法
18
作者 田野 陈津津 张兴义 《计算机应用》 CSCD 北大核心 2024年第5期1386-1392,共7页
约束多目标进化算法(CMOEA)是一类专门为解决约束多目标优化问题而设计的元启发式算法。这类算法利用基于种群的黑盒随机搜索模式,可以在不同优化问题上达到目标与约束之间的有效平衡;然而它们未有效利用函数的梯度信息,在复杂问题上收... 约束多目标进化算法(CMOEA)是一类专门为解决约束多目标优化问题而设计的元启发式算法。这类算法利用基于种群的黑盒随机搜索模式,可以在不同优化问题上达到目标与约束之间的有效平衡;然而它们未有效利用函数的梯度信息,在复杂问题上收敛过慢。但引入梯度信息不是一个简单的过程,同时计算所有目标和约束的梯度会消耗大量的计算资源,且目标和约束之间的矛盾会使梯度方向难以确定。为此,提出一种进化计算和梯度下降(GD)的联合优化算法——基于梯度辅助的多阶段约束多目标进化算法(CMOEA-MSG)。该算法包括两个阶段:在第一阶段,算法通过构建辅助问题并有选择性地计算目标或约束的梯度更新解,使种群快速收敛至可行区域;在第二阶段,算法采用约束优先原则求解原问题,保证种群的可行性和多样性。与现有同类算法在LIR-CMOP、MW和DASCMOP三个测试集上的对比结果表明,CMOEA-MSG可以更有效地解决约束多目标优化问题。 展开更多
关键词 约束多目标优化 进化算法 梯度下降 多阶段搜索
下载PDF
基于双深度输入凸神经网络多模型的中间点过热度预测控制
19
作者 钟信 冯磊华 +1 位作者 何金奇 杨锋 《热力发电》 CAS CSCD 北大核心 2024年第1期107-114,共8页
新能源大量并网,超临界火电机组参与调峰容易造成中间点过热度较大波动,从而导致过热蒸汽超温等问题。为较好控制中间点过热度达到稳定,提出了一种基于双深度输入凸神经网络多模型(muti-DDICNN model)的中间点过热度预测方法,分别训练... 新能源大量并网,超临界火电机组参与调峰容易造成中间点过热度较大波动,从而导致过热蒸汽超温等问题。为较好控制中间点过热度达到稳定,提出了一种基于双深度输入凸神经网络多模型(muti-DDICNN model)的中间点过热度预测方法,分别训练了不同预测步长下子模型,构建了中间点过热度状态预测网络(SPNN)和误差预测网络(EPNN)。利用此预测网络凸性质,设计了一种基于双深度输入凸神经网络多模型预测控制器(DDICNN-MPC),将控制问题转化为凸优化问题,求取控制矩阵对目标函数的雅可比矩阵,采用梯度下降法计算控制矩阵最优解。仿真结果表明,DDICNN-MPC能快速平稳地跟踪中间点过热度设定值,且稳态误差较小,具有较好的调节能力。 展开更多
关键词 中间点过热度 输入凸神经网络 模型预测控制 梯度下降法 凸优化
下载PDF
Pure quantum gradient descent algorithm and full quantum variational eigensolver
20
作者 Ronghang Chen Zhou Guang +2 位作者 Cong Guo Guanru Feng Shi-Yao Hou 《Frontiers of physics》 SCIE CSCD 2024年第2期221-234,共14页
Optimization problems are prevalent in various fields,and the gradient-based gradient descent algorithm is a widely adopted optimization method.However,in classical computing,computing the numerical gradient for a fun... Optimization problems are prevalent in various fields,and the gradient-based gradient descent algorithm is a widely adopted optimization method.However,in classical computing,computing the numerical gradient for a function with variables necessitates at least d+1 function evaluations,resulting in a computational complexity of O(d).As the number of variables increases,the classical gradient estimation methods require substantial resources,ultimately surpassing the capabilities of classical computers.Fortunately,leveraging the principles of superposition and entanglement in quantum mechanics,quantum computers can achieve genuine parallel computing,leading to exponential acceleration over classical algorithms in some cases.In this paper,we propose a novel quantum-based gradient calculation method that requires only a single oracle calculation to obtain the numerical gradient result for a multivariate function.The complexity of this algorithm is just O(1).Building upon this approach,we successfully implemented the quantum gradient descent algorithm and applied it to the variational quantum eigensolver(VQE),creating a pure quantum variational optimization algorithm.Compared with classical gradient-based optimization algorithm,this quantum optimization algorithm has remarkable complexity advantages,providing an efficient solution to optimization problems.The proposed quantum-based method shows promise in enhancing the performance of optimization algorithms,highlighting the potential of quantum computing in this field. 展开更多
关键词 quantum algorithm gradient descent variational quantum algorithm
原文传递
上一页 1 2 37 下一页 到第
使用帮助 返回顶部