This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re ...This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re = 900. Three-dimensional streamlines and limiting streamlines on wall surface are used to analyze the three-dimensional flow characteristics. Topological theory is applied to limiting streamlines on inner walls of the channel and two-dimensional streamlines at several cross sections. It is also shown that the flow impinges on the end wall of turn and the secondary flow is induced by the curvature in the sharp turn.展开更多
In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilin...In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilinear hyperbolic system to solve this problem. The boundary value condition is set in particular to guarantee the character number condition. By this trick, the theory in quasilinear hyperbolic system can be employed to a large range of the boundary value problem.展开更多
To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle eff...To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle efficiency,the finite element method has been used in this study based on the COMSOL computational fluid dynamics module.The study results showed that the process cannot be realized alone under the two-dimensional axisymmetric,three-dimensional and three-dimensional symmetric models,but it can be calculated with the transformation dimension method,which uses the parameter equations generated from the two-dimensional axisymmetric flow field data of the three-dimensional model.The visualization of this complex process,which is difficult to measure and analyze experimentally,was realized in this study.The physical process,macro phenomena and particle distribution of supersonic atomization are analyzed in combination with this simulation.The rationality of the simulation was verified by experiments.A new method for the study of the atomization process and the exploration of its mechanism in a compressible transonic speed flow field based on the Laval nozzle has been provided,and a numerical platform for the study of supersonic atomization dust removal has been established.展开更多
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ...Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.展开更多
The flow behavior of three-dimensional(3D)dendrite growth with random preferred angle under natural convection was studied by using the Lattice Boltzmann-Cellular Automata(LB-CA)method with dynamic and static grids.In...The flow behavior of three-dimensional(3D)dendrite growth with random preferred angle under natural convection was studied by using the Lattice Boltzmann-Cellular Automata(LB-CA)method with dynamic and static grids.In this model,the temperature field,flow field and solute field calculated by Lattice Boltzmann method(LBM)and dendrite growth calculated by CA method were carried out in static and dynamic grids respectively,and the coupling between LBM and CA was performed by interpolation of calculation parameters between dynamic and static grids.Results show that the asymmetry of solid phase distribution makes the streamline distribution more complex.At the initial stage of multiple dendrites growth,the fluid flow is relatively free.When dendrites grow close to each other,the fluid flow is blocked and can only flow along the gap between dendrites.During the wall equiaxed-columnar-central equiaxed crystals transformation(ECET)process,dense eddy current is formed at the wall equiaxed crystals at first.Then,when the wall equiaxed crystals gradually develop into columnar crystals,the eddy current moves with the solid-liquid interface.When the central equiaxed crystals are formed,the eddy current at the front of the columnar crystals gradually disappears.New eddies appear as the central equiaxed crystal grows.展开更多
Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contai...Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow.展开更多
In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-...In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β Re and λ on the velocity field are discussed through graphs.展开更多
Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential...Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.展开更多
The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theor...The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.展开更多
This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed fo...This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other.展开更多
A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall...A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper展开更多
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT...The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.展开更多
The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boun...The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlin- ear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically.展开更多
In this paper,to simulate the three dimensional turbulent flow in suddenly expanded rectangular duct numerically,the SIMPLEC algorithm is employed to solve the incompressible Navier-Stckes equation with k-εturbulenc...In this paper,to simulate the three dimensional turbulent flow in suddenly expanded rectangular duct numerically,the SIMPLEC algorithm is employed to solve the incompressible Navier-Stckes equation with k-εturbulence model.The numerical resulis show well the three dimensional turbulent flow field in the rectangular duct behind the sudden expansion cross-section. and agree.fairly well with the experimental result of the length of the main circumfluence.The numerical method of this paper can be applied to numerical analysis of this kind of turbulent flow.展开更多
Singular initial value problems arise in solving one-dimensional steady transonic flow of dualmode scramjet. The existing solution method has the problems of large initial value errors in principles. This paper puts f...Singular initial value problems arise in solving one-dimensional steady transonic flow of dualmode scramjet. The existing solution method has the problems of large initial value errors in principles. This paper puts forward an improved algorithm based on variable transformation, and constructs a nonsingular one-dimensional steady transonic flow equation by defining a new variable. The improved algorithm can eliminate the singularity of the differential equation, and can solve the singular initial value problems of one-dimensional steady transonic flow of dual-mode scramjet.展开更多
Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is dev...Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is developed, with which nunaerical simulations can be conducted conveniently. For the problem of simulating mechanical behaviors of talus deposit, spatial anangement or sphere shapes should be considered. In the new modeling method, four sphere anangement models are developed for the particle flow simulation of talus deposit. Numerical results show that the talus deposit has the mechanical characteristics of typical stress-strain curves, as other rock-like materials. The cohesion of talus deposit decreases with increasing rock content, while the internal friction angle increases with increasing rock contents. Finally, numerical simulation is verified with the results of field test.展开更多
The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable t...The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.展开更多
文摘This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re = 900. Three-dimensional streamlines and limiting streamlines on wall surface are used to analyze the three-dimensional flow characteristics. Topological theory is applied to limiting streamlines on inner walls of the channel and two-dimensional streamlines at several cross sections. It is also shown that the flow impinges on the end wall of turn and the secondary flow is induced by the curvature in the sharp turn.
文摘In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilinear hyperbolic system to solve this problem. The boundary value condition is set in particular to guarantee the character number condition. By this trick, the theory in quasilinear hyperbolic system can be employed to a large range of the boundary value problem.
基金Supported by the National Natural Science Foundation of China (NO: 51704146, 51274116, 51704145).
文摘To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle efficiency,the finite element method has been used in this study based on the COMSOL computational fluid dynamics module.The study results showed that the process cannot be realized alone under the two-dimensional axisymmetric,three-dimensional and three-dimensional symmetric models,but it can be calculated with the transformation dimension method,which uses the parameter equations generated from the two-dimensional axisymmetric flow field data of the three-dimensional model.The visualization of this complex process,which is difficult to measure and analyze experimentally,was realized in this study.The physical process,macro phenomena and particle distribution of supersonic atomization are analyzed in combination with this simulation.The rationality of the simulation was verified by experiments.A new method for the study of the atomization process and the exploration of its mechanism in a compressible transonic speed flow field based on the Laval nozzle has been provided,and a numerical platform for the study of supersonic atomization dust removal has been established.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology, Beijing University of Science and Technology (KFJJ09-13)
文摘Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.
基金financially supported by the National Natural Science Foundation of China (Nos. 51475138 and 51975182)
文摘The flow behavior of three-dimensional(3D)dendrite growth with random preferred angle under natural convection was studied by using the Lattice Boltzmann-Cellular Automata(LB-CA)method with dynamic and static grids.In this model,the temperature field,flow field and solute field calculated by Lattice Boltzmann method(LBM)and dendrite growth calculated by CA method were carried out in static and dynamic grids respectively,and the coupling between LBM and CA was performed by interpolation of calculation parameters between dynamic and static grids.Results show that the asymmetry of solid phase distribution makes the streamline distribution more complex.At the initial stage of multiple dendrites growth,the fluid flow is relatively free.When dendrites grow close to each other,the fluid flow is blocked and can only flow along the gap between dendrites.During the wall equiaxed-columnar-central equiaxed crystals transformation(ECET)process,dense eddy current is formed at the wall equiaxed crystals at first.Then,when the wall equiaxed crystals gradually develop into columnar crystals,the eddy current moves with the solid-liquid interface.When the central equiaxed crystals are formed,the eddy current at the front of the columnar crystals gradually disappears.New eddies appear as the central equiaxed crystal grows.
基金supported by the National Natural Science Foundation of China and China Academy of Engineering Physics(No. 10576024).
文摘Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow.
文摘In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β Re and λ on the velocity field are discussed through graphs.
文摘Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.
基金supported by the National Natural Science Foundation of China(Nos.11372340 and 11732016)
文摘The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.
基金supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah,Saudi Arabia (No. 2-135/HiCi)
文摘This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other.
文摘A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper
文摘The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.
文摘The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlin- ear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically.
文摘In this paper,to simulate the three dimensional turbulent flow in suddenly expanded rectangular duct numerically,the SIMPLEC algorithm is employed to solve the incompressible Navier-Stckes equation with k-εturbulence model.The numerical resulis show well the three dimensional turbulent flow field in the rectangular duct behind the sudden expansion cross-section. and agree.fairly well with the experimental result of the length of the main circumfluence.The numerical method of this paper can be applied to numerical analysis of this kind of turbulent flow.
基金Hi TechResearchandDevelopmentProgramofChina(2002AA723011),OutstandingYouthFoundationofHeilongjiang Province
文摘Singular initial value problems arise in solving one-dimensional steady transonic flow of dualmode scramjet. The existing solution method has the problems of large initial value errors in principles. This paper puts forward an improved algorithm based on variable transformation, and constructs a nonsingular one-dimensional steady transonic flow equation by defining a new variable. The improved algorithm can eliminate the singularity of the differential equation, and can solve the singular initial value problems of one-dimensional steady transonic flow of dual-mode scramjet.
基金Supported by the National Natural Science Foundation of China(50979030 and 50911130366)
文摘Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is developed, with which nunaerical simulations can be conducted conveniently. For the problem of simulating mechanical behaviors of talus deposit, spatial anangement or sphere shapes should be considered. In the new modeling method, four sphere anangement models are developed for the particle flow simulation of talus deposit. Numerical results show that the talus deposit has the mechanical characteristics of typical stress-strain curves, as other rock-like materials. The cohesion of talus deposit decreases with increasing rock content, while the internal friction angle increases with increasing rock contents. Finally, numerical simulation is verified with the results of field test.
基金supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University, Jeddah, Saudi Arabia
文摘The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.