This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly con...This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly connected component(IISCC)are defined,and a subnetwork called a driver network is developed.Based on these,an efficient method is proposed to find the minimum number of controlled nodes to achieve structural complete controllability of a network,in the case that each input can act on multiple state nodes.The range of the number of input nodes to achieve minimal control,and the configuration method(the connection between the input nodes and the controlled nodes)are presented.All possible input solutions can be obtained by this method.Moreover,we give an example and some experiments on real-world networks to illustrate the effectiveness of the method.展开更多
In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Elect...In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.展开更多
In the analysis of how environmental regulation affects the comparative advantage of trade,existing literature ignores industry's inherent heterogeneity, which draws remarkably different conclusions. In view of th...In the analysis of how environmental regulation affects the comparative advantage of trade,existing literature ignores industry's inherent heterogeneity, which draws remarkably different conclusions. In view of this, the paper analyzed the mechanism of environmental regulation on the export quality of different industries from the perspective of factor input structure heterogeneity. Based on the panel data of China's manufacturing industry, the paper used the system generalized method of moments method to examine the heterogeneity influence of environmental regulation on manufacturing export quality. The study found that, first, environmental regulation affected the export quality upgrade of the manufacturing sector through offset effect and compensation effect, and the direction of the impact would mainly depend on the industry's factor input structure. Second, for industries with larger fixed-asset investment(FAI) ratio in the factor input structure, the current environmental regulation policy was not conducive to the export quality upgrading of the industries. However, there was a significant U-shaped dynamic relationship between them. As environmental regulations became stricter, when regulatory stringency went beyond the inflection point, the policy would promote the upgrading of export quality. But for industries with smaller proportion of FAI, environmental regulation exerted a favorable impact on the export quality upgrade, following a J-shaped marginal growth curve.Third, for industries with different factor input structure, their export quality had been effectively upgraded as expected by factors like human capital investment, independent R&D, technology introduction, and foreign direct investment; but raising per capita capital stock and expanding enterprise size did not produce significant direct impact on export quality upgrade. These conclusions remained robust after using different measurement methods and replacing with other variables. Therefore, this paper suggests that governments should take industry heterogeneity into consideration and formulate differentiated hierarchical environmental policies.Besides, they should strengthen the enforcement of the current environmental regulation policies. By doing so, enterprises are forced to improve their technology and product quality so that they can better cope with rising compliance costs, eliminate backward industries, and resolve excess capacity. In this way, the economic structure would be transformed and upgraded from the supply side.展开更多
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident...The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.展开更多
The electromagnetic field integral equation in the quasi-optical cavity is obtained using the dyadic Green’s function. An expression is derived for the input impedance of a single microstrip patch cavity excited by a...The electromagnetic field integral equation in the quasi-optical cavity is obtained using the dyadic Green’s function. An expression is derived for the input impedance of a single microstrip patch cavity excited by a coaxial probe using moment method. The input impedance of a rectangular microstrip patch is discussed with this method. The result of this paper is similar to that of the microstrip antenna. This paper is of very important value for designing microstrip quasi-optical oscillator.展开更多
The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (...The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.展开更多
This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person t...This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person theorem. The splendid selection of switching manifold for each subsystem makes the design relatively straightforward and can be easily realized. An illustrate example is given.展开更多
In this paper, we address the problem of structure identification of Volterra models. It consists in estimating the model order and the memory length of each kernel. Two methods based on input-output crosscumulants ar...In this paper, we address the problem of structure identification of Volterra models. It consists in estimating the model order and the memory length of each kernel. Two methods based on input-output crosscumulants are developed. The first one uses zero mean independent and identically distributed Caussian input, and the second one concerns a symmetric input sequence. Simulations are performed on six models having different orders and kernel memory lengths to demonstrate the advantages of the proposed methods.展开更多
This paper presents a modeling and an analysis of one-dimensional periodic structure composed of a cascade connection of N cells considered as infinite. The ABCD matrix representations with the Floquet analysis have b...This paper presents a modeling and an analysis of one-dimensional periodic structure composed of a cascade connection of N cells considered as infinite. The ABCD matrix representations with the Floquet analysis have been used to derive the dispersion relation and input impedance of infinite periodic structure. The transmission matrix for the N identical cascaded cells has been successfully used to obtain an efficient and easy-to-use formula giving the necessary number of cells such that they can be considered infinite. As an illustrative example, the formula is applied and verified to finite size TL periodically loaded with obstacles. Scattering parameters and the input impedance of the structure are expressed and plotted.展开更多
In this study,A time-domain seismic response analysis method and a calculation model of the underground structure that can realize the input of seismic P,SV and Rayleigh waves are established,based on the viscoelastic...In this study,A time-domain seismic response analysis method and a calculation model of the underground structure that can realize the input of seismic P,SV and Rayleigh waves are established,based on the viscoelastic artificial boundary elements and the boundary substructure method for seismic wave input.After verifying the calculation accuracy,a comparative study on seismic response of a shallow-buried,double-deck,double-span subway station structure under incident P,SV and Rayleigh waves is conducted.The research results show that there are certain differences in the cross-sectional internal force distribution characteristics of underground structures under different types of seismic waves.The research results show that there are certain differences in the internal force distribution characteristics of underground structures under different types of seismic waves.At the bottom of the side wall,the top and bottom of the center pillar of the underground structure,the section bending moments of the underground structure under the incidences of SV wave and Rayleigh wave are relatively close,and are significantly larger than the calculation result under the incidence of P wave.At the center of the side wall and the top floor of the structure,the peak value of the cross-sectional internal force under the incident Rayleigh wave is larger than the calculation result under SV wave.In addition,the floor of the underground structure under Rayleigh waves vibrates in both the horizontal and vertical directions,and the magnification effect in the vertical direction is more significant.Considering that the current seismic research of underground structures mainly considers the effect of body waves such as the shear waves,sufficient attention should be paid to the incidence of Rayleigh waves in the future seismic design of shallow underground structures.展开更多
We present in this paper a new formulation of the iterative method FWCIP “Fast Wave Concept Iterative Process” based on the wave concept. It calculates the electromagnetic parameters of a planar structure including ...We present in this paper a new formulation of the iterative method FWCIP “Fast Wave Concept Iterative Process” based on the wave concept. It calculates the electromagnetic parameters of a planar structure including a via-hole. This is modelled by the electromagnetic field that it creates in the structure. The validation of results found by this new formulation is ensured by comparison with those obtained by HFSS “high frequency structural simulator” software from Ansoft. They show that they are in good agreement.展开更多
The total carbon emissions control is the ultimate goal of carbon emission reduction, while industrial carbon emissions are the basic units of the total carbon emission. On the basis of existing research results, in t...The total carbon emissions control is the ultimate goal of carbon emission reduction, while industrial carbon emissions are the basic units of the total carbon emission. On the basis of existing research results, in this paper, a two-stage input-output structure decomposition method is creatively proposed for fully combining the input-output method with the structure decomposition technique. In this study, more comprehensive technical progress indicators were chosen in comparison with the previous studies and included the utilization efficiency of all kinds of intermediate inputs such as energy and non-energy products, and finally were positioned at the factors affecting the carbon emissions of different industries. Through analysis, the affecting rate of each factor on industrial carbon emissions was acquired. Thus, a theory basis and data support is provided for the total carbon emissions control of China from the perspective of industrial emissions.展开更多
We propose a pipeline structure for Schnorr-Euchner sphere decoding algorithm in this article. It divides the search tree of the original algorithm into blocks and executes the search from block to block. When one blo...We propose a pipeline structure for Schnorr-Euchner sphere decoding algorithm in this article. It divides the search tree of the original algorithm into blocks and executes the search from block to block. When one block search of a signal is over, the part in the pipeline structure that processes this block search can load another signal and search. Several signals can be processed at the same time in one pipeline. Blocks are arranged to lower the whole complexity in the way that the previously search blocks are the blocks those have more probability to generate the final solution. Simulation experiment results show the average process delay can drop to the range from 48.77% to 60.18% in a 4-by-4 antenna system with 16QAM modulation, or from 30.31% to 61.59% in a 4-by-4 antenna system with 64QAM modulation.展开更多
基金supported in part by the National Natural Science Foundation of China(U1808205,62173079)the Natural Science Foundation of Hebei Province of China(F2000501005)。
文摘This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly connected component(IISCC)are defined,and a subnetwork called a driver network is developed.Based on these,an efficient method is proposed to find the minimum number of controlled nodes to achieve structural complete controllability of a network,in the case that each input can act on multiple state nodes.The range of the number of input nodes to achieve minimal control,and the configuration method(the connection between the input nodes and the controlled nodes)are presented.All possible input solutions can be obtained by this method.Moreover,we give an example and some experiments on real-world networks to illustrate the effectiveness of the method.
文摘In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.
文摘In the analysis of how environmental regulation affects the comparative advantage of trade,existing literature ignores industry's inherent heterogeneity, which draws remarkably different conclusions. In view of this, the paper analyzed the mechanism of environmental regulation on the export quality of different industries from the perspective of factor input structure heterogeneity. Based on the panel data of China's manufacturing industry, the paper used the system generalized method of moments method to examine the heterogeneity influence of environmental regulation on manufacturing export quality. The study found that, first, environmental regulation affected the export quality upgrade of the manufacturing sector through offset effect and compensation effect, and the direction of the impact would mainly depend on the industry's factor input structure. Second, for industries with larger fixed-asset investment(FAI) ratio in the factor input structure, the current environmental regulation policy was not conducive to the export quality upgrading of the industries. However, there was a significant U-shaped dynamic relationship between them. As environmental regulations became stricter, when regulatory stringency went beyond the inflection point, the policy would promote the upgrading of export quality. But for industries with smaller proportion of FAI, environmental regulation exerted a favorable impact on the export quality upgrade, following a J-shaped marginal growth curve.Third, for industries with different factor input structure, their export quality had been effectively upgraded as expected by factors like human capital investment, independent R&D, technology introduction, and foreign direct investment; but raising per capita capital stock and expanding enterprise size did not produce significant direct impact on export quality upgrade. These conclusions remained robust after using different measurement methods and replacing with other variables. Therefore, this paper suggests that governments should take industry heterogeneity into consideration and formulate differentiated hierarchical environmental policies.Besides, they should strengthen the enforcement of the current environmental regulation policies. By doing so, enterprises are forced to improve their technology and product quality so that they can better cope with rising compliance costs, eliminate backward industries, and resolve excess capacity. In this way, the economic structure would be transformed and upgraded from the supply side.
基金National Natural Science Foundation of China under Grant No.51478247National Key Research and Development Program of China under Grant No.2016YFC1402800
文摘The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.
基金Supported by the National Science Foundation of China
文摘The electromagnetic field integral equation in the quasi-optical cavity is obtained using the dyadic Green’s function. An expression is derived for the input impedance of a single microstrip patch cavity excited by a coaxial probe using moment method. The input impedance of a rectangular microstrip patch is discussed with this method. The result of this paper is similar to that of the microstrip antenna. This paper is of very important value for designing microstrip quasi-optical oscillator.
文摘The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.
文摘This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person theorem. The splendid selection of switching manifold for each subsystem makes the design relatively straightforward and can be easily realized. An illustrate example is given.
文摘In this paper, we address the problem of structure identification of Volterra models. It consists in estimating the model order and the memory length of each kernel. Two methods based on input-output crosscumulants are developed. The first one uses zero mean independent and identically distributed Caussian input, and the second one concerns a symmetric input sequence. Simulations are performed on six models having different orders and kernel memory lengths to demonstrate the advantages of the proposed methods.
文摘This paper presents a modeling and an analysis of one-dimensional periodic structure composed of a cascade connection of N cells considered as infinite. The ABCD matrix representations with the Floquet analysis have been used to derive the dispersion relation and input impedance of infinite periodic structure. The transmission matrix for the N identical cascaded cells has been successfully used to obtain an efficient and easy-to-use formula giving the necessary number of cells such that they can be considered infinite. As an illustrative example, the formula is applied and verified to finite size TL periodically loaded with obstacles. Scattering parameters and the input impedance of the structure are expressed and plotted.
基金supported by National Natural Science Foundation of China(Grant no.U1839201)China National Postdoctoral Program of Innovative Talents(Grant no.BX20200192)+1 种基金China Postdoctoral Science Foundation,China(2020M680575)Shuimu Tsinghua Scholar Program(Grant no.2020SM005)。
文摘In this study,A time-domain seismic response analysis method and a calculation model of the underground structure that can realize the input of seismic P,SV and Rayleigh waves are established,based on the viscoelastic artificial boundary elements and the boundary substructure method for seismic wave input.After verifying the calculation accuracy,a comparative study on seismic response of a shallow-buried,double-deck,double-span subway station structure under incident P,SV and Rayleigh waves is conducted.The research results show that there are certain differences in the cross-sectional internal force distribution characteristics of underground structures under different types of seismic waves.The research results show that there are certain differences in the internal force distribution characteristics of underground structures under different types of seismic waves.At the bottom of the side wall,the top and bottom of the center pillar of the underground structure,the section bending moments of the underground structure under the incidences of SV wave and Rayleigh wave are relatively close,and are significantly larger than the calculation result under the incidence of P wave.At the center of the side wall and the top floor of the structure,the peak value of the cross-sectional internal force under the incident Rayleigh wave is larger than the calculation result under SV wave.In addition,the floor of the underground structure under Rayleigh waves vibrates in both the horizontal and vertical directions,and the magnification effect in the vertical direction is more significant.Considering that the current seismic research of underground structures mainly considers the effect of body waves such as the shear waves,sufficient attention should be paid to the incidence of Rayleigh waves in the future seismic design of shallow underground structures.
文摘We present in this paper a new formulation of the iterative method FWCIP “Fast Wave Concept Iterative Process” based on the wave concept. It calculates the electromagnetic parameters of a planar structure including a via-hole. This is modelled by the electromagnetic field that it creates in the structure. The validation of results found by this new formulation is ensured by comparison with those obtained by HFSS “high frequency structural simulator” software from Ansoft. They show that they are in good agreement.
文摘The total carbon emissions control is the ultimate goal of carbon emission reduction, while industrial carbon emissions are the basic units of the total carbon emission. On the basis of existing research results, in this paper, a two-stage input-output structure decomposition method is creatively proposed for fully combining the input-output method with the structure decomposition technique. In this study, more comprehensive technical progress indicators were chosen in comparison with the previous studies and included the utilization efficiency of all kinds of intermediate inputs such as energy and non-energy products, and finally were positioned at the factors affecting the carbon emissions of different industries. Through analysis, the affecting rate of each factor on industrial carbon emissions was acquired. Thus, a theory basis and data support is provided for the total carbon emissions control of China from the perspective of industrial emissions.
文摘We propose a pipeline structure for Schnorr-Euchner sphere decoding algorithm in this article. It divides the search tree of the original algorithm into blocks and executes the search from block to block. When one block search of a signal is over, the part in the pipeline structure that processes this block search can load another signal and search. Several signals can be processed at the same time in one pipeline. Blocks are arranged to lower the whole complexity in the way that the previously search blocks are the blocks those have more probability to generate the final solution. Simulation experiment results show the average process delay can drop to the range from 48.77% to 60.18% in a 4-by-4 antenna system with 16QAM modulation, or from 30.31% to 61.59% in a 4-by-4 antenna system with 64QAM modulation.