A new space-time block codes based on quasi-orthogonal designs are put forward. First the channel model is formulated. Then the connection between orthogonal /quasi-orthogonal designs and space-time block codes is exp...A new space-time block codes based on quasi-orthogonal designs are put forward. First the channel model is formulated. Then the connection between orthogonal /quasi-orthogonal designs and space-time block codes is explored. Finally we make simulations for the transmission of 4 bits/s/Hz and 6 bits/s/Hz using eight transmit antennas using the rate 3/4 quasi-orthogonal space-time block code and the rate 1/2 full-diversity orthogonal space-time block code. Simulation results show that full transmission rate is more important for very low signal noise ratio (SNR) and high bit error probability (BEP), while full diversity is more important for very high SNR and low BEP.展开更多
Full-rate is very important in any data transmission coding. For transmitting data at low bit rate than full-rate code, higher modulation scheme is required. But it is impossible to design full rate orthogonal designs...Full-rate is very important in any data transmission coding. For transmitting data at low bit rate than full-rate code, higher modulation scheme is required. But it is impossible to design full rate orthogonal designs with complex constellation for more than two transmit antennas. Only Alamouti code provides full-rate for two transmit antennas. In this paper, Bit Error Rate (BER) is calculated for Quasi-Orthogonal Space-time Block Coding (QOSTBC). Here we work with Rayleigh fading channel. We consider the codes which decodes pairs of symbols instead of simple separate decoding like Orthogonal Space-Time Block Coding. In Quasi-Orthogonal Space-time Block Code full-rate is achieved but full-diversity is sacrificed. Diversity is the most important techniques for providing reliable communication over fading channels. One of the diversity techniques that uses multiple transmit and/or receive antennas is space diversity. Multiple antenna technique provides a space diversity to struggle with the fading without necessarily sacrificing bandwidth resources, so the excellent solutions of removing the fading of the channel for broadband wireless communications is using space diversity. Then, with the constellation rotation of the symbol, rotated version of Quasi-Orthogonal Space-Time Block Code is generated. It provides full diversity. We simulate BER for QOSTBC, rotated QOSTBC, orthogonal STBC and for uncoded system. The simulation result shows that QOSTBC and rotated QOSTBC perform better than other systems. It shows that QOSTBC provides a full transmission rate but that rotated QOSTBC provides the full rate with the full diversity.展开更多
In this paper,we propose a Quasi-Orthogonal Matching Pursuit(QOMP)algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials.For the two kinds of sampled data,data ...In this paper,we propose a Quasi-Orthogonal Matching Pursuit(QOMP)algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials.For the two kinds of sampled data,data with noises and without noises,we apply the mutual coherence of measurement matrix to establish the convergence of the QOMP algorithm which can reconstruct s-sparse Legendre polynomials,Chebyshev polynomials and trigonometric polynomials in s step iterations.The results are also extended to general bounded orthogonal system including tensor product of these three univariate orthogonal polynomials.Finally,numerical experiments will be presented to verify the effectiveness of the QOMP method.展开更多
We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-...We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-time block code(QOSTBC) have different error performances with different signal-to-noise ratios(SNRs) and in different spatial correlation scenarios.The error performance can be improved by selecting an appropriate transmission scheme to adapt to various channel conditions.The maximum distance criterion is the simplest and very effective algorithm for the antenna subset selection without needs of complex calculation and channel state information at transmitter(CSIT).The minimum error performance criteria and the simplified linear decision strategy are developed for constant transmission rate traffic to select the optimal transmission scheme.It can dramatically decrease algorithm complexity for obtaining error probability according to the known quantities comparing with using instant CSIT.Simulation results show that,remarkable performances including low SNR and weak spatial correlation at the expense of simple calculation and almost no bandwidth loss by adopting AMCS can be achieved.The proposed AMCS improves robustness of slowly varying spatial correlated channels.展开更多
Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing( ZF) /minimum mean square error( MMSE) decoding algorithm, two low-complexity suboptimal decoding algorithms, ...Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing( ZF) /minimum mean square error( MMSE) decoding algorithm, two low-complexity suboptimal decoding algorithms, called pairwisequasi-ZF and pairwise-quasi-MMSE decoders, are proposed. First,two transmit signals are detected by the quasi-ZF or the quasiMMSE algorithm at the receiver. Then, the two detected signals as the decoding results are substituted into the two pairwise decoding algorithm expressions to detect the other two transmit signals. The bit error rate( BER) performance of the proposed algorithms is compared with that of the current known decoding algorithms.Also, the number of calculations of ZF, MMSE, quasi-ZF and quasi-MMSE algorithms is compared with each other. Simulation results showthat the BER performance of the proposed algorithms is substantially improved in comparison to the quasi-ZF and quasiMMSE algorithms. The BER performance of the pairwise-quasiZF( pairwise-quasi-MMSE) decoder is equivalent to the pairwiseZF( pairwise-MMSE) decoder, while the computational complexity is significantly reduced.展开更多
This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, ran...This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, range, range rate, target scattering and noise characteristics. Recent research indicates the potential pa- rameter estimate performance of bistatic MIMO radars. And this ambiguity function can be used to analyze the parameter estimate performance for the relationship with the Cramer-Rao bounds of the estimated parameters. Finally, some examples are given to demonstrate the good parameter estimate performance of the bistatic MIMO radar, using the quasi-orthogonal waveforms based on Lorenz chaotic systems.展开更多
The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding ...The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding algorithm without matrix inversion is proposed, by which the computational complexity can be reduced directly but the decoding performance is not affected.展开更多
The authors investigate Petrov-Galerkin spectral element method. Some results on Legendre irrational quasi-orthogonal approximations are established, which play important roles in Petrov-Galerkin spectral element meth...The authors investigate Petrov-Galerkin spectral element method. Some results on Legendre irrational quasi-orthogonal approximations are established, which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons. As examples of applications, spectral element methods for two model problems, with the spectral accuracy in certain Jacobi weighted Sobolev spaces, are proposed. The techniques developed in this paper are also applicable to other higher order methods.展开更多
This paper proves the error reduction property (saturation property), convergence and optimality of an adaptive mixed finite element method (AMFEM) for the Poisson equation. In each step of AMFEM, the local refine...This paper proves the error reduction property (saturation property), convergence and optimality of an adaptive mixed finite element method (AMFEM) for the Poisson equation. In each step of AMFEM, the local refinement is performed basing on simple either edge-oriented residuals or edge-oriented data oscillations, depending only on the marking strategy, under some restriction of refinement. The main tools used here are the strict discrete local efficiency property given by Carstensen and Hoppe (2006) and the quasi-orthogonality estimate proved by Chen, Holst, and Xu (2009). Numerical experiments fully confirm the theoretical analysis.展开更多
A new quasi-orthogonal space-time block code (QO-STBC) scheme, based on eigen value decomposition (EVD), is explored in this paper. The new scheme can significantly reduce the QO-STBC decoding complexity at receiv...A new quasi-orthogonal space-time block code (QO-STBC) scheme, based on eigen value decomposition (EVD), is explored in this paper. The new scheme can significantly reduce the QO-STBC decoding complexity at receiver and achieves better bit-error rate (BER) performance as well. With EVD manipulations, the detection matrix and the channel matrix can be redefined to remove all interference terms which come from other antennas, and therefore the conventional maximum likelihood (ML) decoding method with less complexity can be applied. Moreover the new scheme improves the BER performance significantly. Theoretical analysis and simulation results are presented in this paper to show the validation of this new scheme.展开更多
文摘A new space-time block codes based on quasi-orthogonal designs are put forward. First the channel model is formulated. Then the connection between orthogonal /quasi-orthogonal designs and space-time block codes is explored. Finally we make simulations for the transmission of 4 bits/s/Hz and 6 bits/s/Hz using eight transmit antennas using the rate 3/4 quasi-orthogonal space-time block code and the rate 1/2 full-diversity orthogonal space-time block code. Simulation results show that full transmission rate is more important for very low signal noise ratio (SNR) and high bit error probability (BEP), while full diversity is more important for very high SNR and low BEP.
文摘Full-rate is very important in any data transmission coding. For transmitting data at low bit rate than full-rate code, higher modulation scheme is required. But it is impossible to design full rate orthogonal designs with complex constellation for more than two transmit antennas. Only Alamouti code provides full-rate for two transmit antennas. In this paper, Bit Error Rate (BER) is calculated for Quasi-Orthogonal Space-time Block Coding (QOSTBC). Here we work with Rayleigh fading channel. We consider the codes which decodes pairs of symbols instead of simple separate decoding like Orthogonal Space-Time Block Coding. In Quasi-Orthogonal Space-time Block Code full-rate is achieved but full-diversity is sacrificed. Diversity is the most important techniques for providing reliable communication over fading channels. One of the diversity techniques that uses multiple transmit and/or receive antennas is space diversity. Multiple antenna technique provides a space diversity to struggle with the fading without necessarily sacrificing bandwidth resources, so the excellent solutions of removing the fading of the channel for broadband wireless communications is using space diversity. Then, with the constellation rotation of the symbol, rotated version of Quasi-Orthogonal Space-Time Block Code is generated. It provides full diversity. We simulate BER for QOSTBC, rotated QOSTBC, orthogonal STBC and for uncoded system. The simulation result shows that QOSTBC and rotated QOSTBC perform better than other systems. It shows that QOSTBC provides a full transmission rate but that rotated QOSTBC provides the full rate with the full diversity.
基金supported by National Natural Science Foundation of China no.12071019.
文摘In this paper,we propose a Quasi-Orthogonal Matching Pursuit(QOMP)algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials.For the two kinds of sampled data,data with noises and without noises,we apply the mutual coherence of measurement matrix to establish the convergence of the QOMP algorithm which can reconstruct s-sparse Legendre polynomials,Chebyshev polynomials and trigonometric polynomials in s step iterations.The results are also extended to general bounded orthogonal system including tensor product of these three univariate orthogonal polynomials.Finally,numerical experiments will be presented to verify the effectiveness of the QOMP method.
基金the Chinese Scholarship Council for the financial support
文摘We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-time block code(QOSTBC) have different error performances with different signal-to-noise ratios(SNRs) and in different spatial correlation scenarios.The error performance can be improved by selecting an appropriate transmission scheme to adapt to various channel conditions.The maximum distance criterion is the simplest and very effective algorithm for the antenna subset selection without needs of complex calculation and channel state information at transmitter(CSIT).The minimum error performance criteria and the simplified linear decision strategy are developed for constant transmission rate traffic to select the optimal transmission scheme.It can dramatically decrease algorithm complexity for obtaining error probability according to the known quantities comparing with using instant CSIT.Simulation results show that,remarkable performances including low SNR and weak spatial correlation at the expense of simple calculation and almost no bandwidth loss by adopting AMCS can be achieved.The proposed AMCS improves robustness of slowly varying spatial correlated channels.
基金The National Natural Science Foundation of China(No.6157110861201248)+1 种基金the Open Research Fund of National Mobile Communications Research Laboratory of China(No.2011D18)China Postdoctoral Science Foundation(No.2012M511175)
文摘Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing( ZF) /minimum mean square error( MMSE) decoding algorithm, two low-complexity suboptimal decoding algorithms, called pairwisequasi-ZF and pairwise-quasi-MMSE decoders, are proposed. First,two transmit signals are detected by the quasi-ZF or the quasiMMSE algorithm at the receiver. Then, the two detected signals as the decoding results are substituted into the two pairwise decoding algorithm expressions to detect the other two transmit signals. The bit error rate( BER) performance of the proposed algorithms is compared with that of the current known decoding algorithms.Also, the number of calculations of ZF, MMSE, quasi-ZF and quasi-MMSE algorithms is compared with each other. Simulation results showthat the BER performance of the proposed algorithms is substantially improved in comparison to the quasi-ZF and quasiMMSE algorithms. The BER performance of the pairwise-quasiZF( pairwise-quasi-MMSE) decoder is equivalent to the pairwiseZF( pairwise-MMSE) decoder, while the computational complexity is significantly reduced.
基金supported by the Innovation Project for Excellent Postgraduates of Hunan Province (CX2011B018)the Innovation Project for Excellent Postgraduates of National University of Defense Technology (B110402)
文摘This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, range, range rate, target scattering and noise characteristics. Recent research indicates the potential pa- rameter estimate performance of bistatic MIMO radars. And this ambiguity function can be used to analyze the parameter estimate performance for the relationship with the Cramer-Rao bounds of the estimated parameters. Finally, some examples are given to demonstrate the good parameter estimate performance of the bistatic MIMO radar, using the quasi-orthogonal waveforms based on Lorenz chaotic systems.
文摘The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding algorithm without matrix inversion is proposed, by which the computational complexity can be reduced directly but the decoding performance is not affected.
基金supported by the National Natural Science Foundation of China (No. 10871131)the Fund for Doctoral Authority of China (No. 200802700001)+1 种基金the Shanghai Leading Academic Discipline Project(No. S30405)the Fund for E-institutes of Shanghai Universities (No. E03004)
文摘The authors investigate Petrov-Galerkin spectral element method. Some results on Legendre irrational quasi-orthogonal approximations are established, which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons. As examples of applications, spectral element methods for two model problems, with the spectral accuracy in certain Jacobi weighted Sobolev spaces, are proposed. The techniques developed in this paper are also applicable to other higher order methods.
基金supported in part by the Natural Science Foundation of China under Grant No.10771150the National Basic Research Program of China under Grant No.2005CB321701the Natural Science Foundation of Chongqing City under Grant No.CSTC,2010BB8270
文摘This paper proves the error reduction property (saturation property), convergence and optimality of an adaptive mixed finite element method (AMFEM) for the Poisson equation. In each step of AMFEM, the local refinement is performed basing on simple either edge-oriented residuals or edge-oriented data oscillations, depending only on the marking strategy, under some restriction of refinement. The main tools used here are the strict discrete local efficiency property given by Carstensen and Hoppe (2006) and the quasi-orthogonality estimate proved by Chen, Holst, and Xu (2009). Numerical experiments fully confirm the theoretical analysis.
文摘A new quasi-orthogonal space-time block code (QO-STBC) scheme, based on eigen value decomposition (EVD), is explored in this paper. The new scheme can significantly reduce the QO-STBC decoding complexity at receiver and achieves better bit-error rate (BER) performance as well. With EVD manipulations, the detection matrix and the channel matrix can be redefined to remove all interference terms which come from other antennas, and therefore the conventional maximum likelihood (ML) decoding method with less complexity can be applied. Moreover the new scheme improves the BER performance significantly. Theoretical analysis and simulation results are presented in this paper to show the validation of this new scheme.