This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted thre...This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted three body problem (CR3BP). The relation between the Floquet multipliers and the magnitudes of Halo orbit is established, so that the suitable magnitude for the aerospace mission is chosen in terms of the stability of Halo orbit. The stable manifold is investigated from the Poincar6 mapping defined which is different from the previous researches, and six types of single-impulse transfer trajectories are attained from the geometry of the invariant manifolds. Based on one of the trajectories of indirect transfer which are ignored in the most of literatures, the stochastic control theory for imperfect information of the discrete linear stochastic system is applied to design the trajectory correction maneuver. The statistical dispersion analysis is performed by Monte-Carlo simulation,展开更多
This paper deals with generation of halo orbits in the three-dimensional photogravitational restricted three-body problem, where the more massive primary is considered as the source of radiation and the smaller primar...This paper deals with generation of halo orbits in the three-dimensional photogravitational restricted three-body problem, where the more massive primary is considered as the source of radiation and the smaller primary is an oblate spheroid with its equatorial plane coincident with the plane of motion. Both the terms due to oblateness of the smaller primary are considered. Numerical as well as analytical solutions are obtained around the Lagrangian point L1, which lies between the primaries, of the Sun-Earth system. A comparison with the real time flight data of SOHO mission is made. Inclusion of oblateness of the smaller primary can improve the accuracy. Due to the effect of radiation pressure and oblateness, the size and the orbital period of the halo orbit around L1 are found to increase.展开更多
We study of halo orbits in the circular restricted three-body problem (CRTBP) with both the primaries as sources of radiation. The positioning of the triangular equilibrium points is discussed in a rotating coordinate...We study of halo orbits in the circular restricted three-body problem (CRTBP) with both the primaries as sources of radiation. The positioning of the triangular equilibrium points is discussed in a rotating coordinate system.展开更多
The Circular Restricted Three-Body Problem (CRTBP) with more massive primary as an oblate spheroid with its equatorial plane coincident with the plane of motion of the primaries is considered to generate the halo orbi...The Circular Restricted Three-Body Problem (CRTBP) with more massive primary as an oblate spheroid with its equatorial plane coincident with the plane of motion of the primaries is considered to generate the halo orbits around L1 and L2 for the seven satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Titan and Iapetus) of Saturn in the frame work of CRTBP. It is found that the oblateness effect of Saturn on the halo orbits of the satellites closer to Saturn has significant effect compared to the satellites away from it. The halo orbits L1 and L2 are found to move towards Saturn with oblateness.展开更多
在传统星座自主定轨中,SST(satellite to satellite tracking)可以同时提供轨道的大小、形状和星座相对方位信息,但不能确定星座的绝对定向。针对这一亏秩问题,联合圆型限制性三体模型CRTBP(circle restricted three bodyproblem)下的...在传统星座自主定轨中,SST(satellite to satellite tracking)可以同时提供轨道的大小、形状和星座相对方位信息,但不能确定星座的绝对定向。针对这一亏秩问题,联合圆型限制性三体模型CRTBP(circle restricted three bodyproblem)下的一种平动点周期轨道-Halo轨道飞行器,与二体问题轨道卫星组成扩展星座。利用两种力模型的特性差异,可以去除星座系统上的相关性,避免星座的整体旋转,从而确定星座的全部轨道状态参量。分析Halo轨道的力模型及性态特点,从系数矩阵的相关性角度讨论引进Halo轨道对定轨法矩阵正定性的改善作用,利用地月系L1平动点附近的Halo轨道与月球低轨卫星(LMO)的星间链路,在理想CRTBP框架下进行自主定轨仿真。初步验证了LMO-Halo星座定轨可行性,为开展附加平动点轨道的星座SST定轨提供了参考依据。展开更多
基金National Natural Science Foundation of China (10702003)Innovation Foundation of Beijing University of Aeronautics and Astronautics for Ph.D. Graduates
文摘This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted three body problem (CR3BP). The relation between the Floquet multipliers and the magnitudes of Halo orbit is established, so that the suitable magnitude for the aerospace mission is chosen in terms of the stability of Halo orbit. The stable manifold is investigated from the Poincar6 mapping defined which is different from the previous researches, and six types of single-impulse transfer trajectories are attained from the geometry of the invariant manifolds. Based on one of the trajectories of indirect transfer which are ignored in the most of literatures, the stochastic control theory for imperfect information of the discrete linear stochastic system is applied to design the trajectory correction maneuver. The statistical dispersion analysis is performed by Monte-Carlo simulation,
文摘This paper deals with generation of halo orbits in the three-dimensional photogravitational restricted three-body problem, where the more massive primary is considered as the source of radiation and the smaller primary is an oblate spheroid with its equatorial plane coincident with the plane of motion. Both the terms due to oblateness of the smaller primary are considered. Numerical as well as analytical solutions are obtained around the Lagrangian point L1, which lies between the primaries, of the Sun-Earth system. A comparison with the real time flight data of SOHO mission is made. Inclusion of oblateness of the smaller primary can improve the accuracy. Due to the effect of radiation pressure and oblateness, the size and the orbital period of the halo orbit around L1 are found to increase.
文摘We study of halo orbits in the circular restricted three-body problem (CRTBP) with both the primaries as sources of radiation. The positioning of the triangular equilibrium points is discussed in a rotating coordinate system.
文摘The Circular Restricted Three-Body Problem (CRTBP) with more massive primary as an oblate spheroid with its equatorial plane coincident with the plane of motion of the primaries is considered to generate the halo orbits around L1 and L2 for the seven satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Titan and Iapetus) of Saturn in the frame work of CRTBP. It is found that the oblateness effect of Saturn on the halo orbits of the satellites closer to Saturn has significant effect compared to the satellites away from it. The halo orbits L1 and L2 are found to move towards Saturn with oblateness.
文摘在传统星座自主定轨中,SST(satellite to satellite tracking)可以同时提供轨道的大小、形状和星座相对方位信息,但不能确定星座的绝对定向。针对这一亏秩问题,联合圆型限制性三体模型CRTBP(circle restricted three bodyproblem)下的一种平动点周期轨道-Halo轨道飞行器,与二体问题轨道卫星组成扩展星座。利用两种力模型的特性差异,可以去除星座系统上的相关性,避免星座的整体旋转,从而确定星座的全部轨道状态参量。分析Halo轨道的力模型及性态特点,从系数矩阵的相关性角度讨论引进Halo轨道对定轨法矩阵正定性的改善作用,利用地月系L1平动点附近的Halo轨道与月球低轨卫星(LMO)的星间链路,在理想CRTBP框架下进行自主定轨仿真。初步验证了LMO-Halo星座定轨可行性,为开展附加平动点轨道的星座SST定轨提供了参考依据。