The real-time monitoring of environmental radiation dose for nuclear fa-cilities is an important part of safety, in order to guarantee the accuracy of the monitoring results regular calibration is necessary. Around nu...The real-time monitoring of environmental radiation dose for nuclear fa-cilities is an important part of safety, in order to guarantee the accuracy of the monitoring results regular calibration is necessary. Around nuclear facilities there are so many environmental dosimeters installed dispers-edly, because of its huge quantity, widely distributed, and in real-time monitoring state;it will cost lots of manpower and finance if it were tak-en to calibrate on standard laboratory;what’s more it will make the en-vironment out of control. To solve the problem of the measurement ac-curacy of the stationary gamma radiation dosimeter, an on-site calibra-tion method is proposed. The radioactive source is X-ray spectrum, and the dose reference instrument which has been calibrated by the national standard laboratory is a high pressure ionization. On-site calibration is divided into two parts;firstly the energy response experiment of dosim-eter for high and low energy is done in the laboratory, and the energy response curve is obtained combining with Monte Carlo simulation;sec-ondly experiment is carried out in the field of the measuring dosimeter, and the substitution method to calibrate the dosimeter is used;finally the calibration coefficient is gotten through energy curve correction. In order to verify the accuracy of on-site calibration method, the calibrated dosimeter is test in the standard laboratory and the error is 3.4%. The re-sult shows that the on-site calibration method using X-ray is feasible, and it can improves the accuracy of the measurement results of the stationary γ-ray instrument;what’s more important is that it has great reference value for the radiation safety management and radiation environment evaluation.展开更多
Proposed is a two-dimensional(2D)spectrum analysis system for acquiring the statistical information of radioactive particles on two dimensions,i.e.energy and time.Based on pulse width modulation readout circuit,such a...Proposed is a two-dimensional(2D)spectrum analysis system for acquiring the statistical information of radioactive particles on two dimensions,i.e.energy and time.Based on pulse width modulation readout circuit,such a system with 4-channels is designed,which converts the radiation signal into a rectangular pulse signal with pulse width modulated.The pulse width,occurrence time,and pulse count of the rectangular pulses are measured simultaneously with digital counters,so that the 2D spectra on energy and time of the radioactive particles can be obtained efficiently based on bi-parameter statistical analysis.A prototype of this 2D system is tested with gamma rays from 241Am isotopes,from which both the correlated 2D spectra and the independent spectra on energy and time are obtained.The energy spectra of four channels shows all characteristic peaks of 241Am gamma rays,among which the full-energy peak at 59.5keV exhibits energy resolution of about 5-6%,suggesting a good energy resolution and channel uniformity of the system.The regression of the time spectra of the characteristic peaks can give the time constants of each characteristic peak,revealing the time characteristics of the nuclear reactions in the radiative source.展开更多
Using time-resolved spectral data for a sample of 30 pulses in 27 bright GRBs detected with CGRO/BATSE, we investigate the luminosity-peak energy relation (L-E p relation) in the decay phases of these pulses. A tight ...Using time-resolved spectral data for a sample of 30 pulses in 27 bright GRBs detected with CGRO/BATSE, we investigate the luminosity-peak energy relation (L-E p relation) in the decay phases of these pulses. A tight L-E p relation is found for most of the pulses, but its power law index is various among pulses, which is normally distributed at 1.84±0.60(1σ) for the pulses in our sample, roughly consistent with the L-E p relation within a GRB and the isotropic gamma-ray energy-E p relation among GRBs. The large scatter of the power law index cannot be explained with both the statistical or observational effects and it may be an intrinsic feature, indicating that no universal L-E p relation would be expected among GRBs/pulses. This may strongly weaken the cosmological use of this relation.展开更多
With the prompt slewing capability of the X-ray and UV-optical telescopes onboard the Swift mission and with the gamma-ray large area telescope onboard the Fermi mission,gamma-ray bursts(GRBs) are now accessible in a ...With the prompt slewing capability of the X-ray and UV-optical telescopes onboard the Swift mission and with the gamma-ray large area telescope onboard the Fermi mission,gamma-ray bursts(GRBs) are now accessible in a full time window and in all electromagnetic wavelengths for the events.Many observational breakthroughs have been made in recent years.I present here a brief review of some observational breakthroughs with the two missions,focusing on how these breakthroughs have revolutionized our understanding of the nature of this phenomenon and puzzles as well as challenges of confronting the conventional models with data.展开更多
A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOGll4) to amplify the pulse signal logarithmically ...A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOGll4) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.展开更多
The Large High Altitude Air Shower Observatory(LHAASO)has reported the measurement of photons with high energies of up to 1.42 PeV from twelve gamma-ray sources.We are concerned with the implications of the LHAASO dat...The Large High Altitude Air Shower Observatory(LHAASO)has reported the measurement of photons with high energies of up to 1.42 PeV from twelve gamma-ray sources.We are concerned with the implications of the LHAASO data on the fate of Lorenz symmetry at such high energy levels;thus,we consider the interaction between gamma rays and photons in the cosmic microwave background(CMB)and compute the optical depth,mean free path,and survival probability of photons from these gamma-ray sources.Employing the threshold value predicted by standard special relativity,the lowest survival probability for observed gamma ray photons is found to be approximately 0.60,which is fairly high and implies that abundant photons with energies above the threshold may reach the Earth without Lorentz symmetry violation.We conclude that it is unreasonable to argue that Lorentz symmetry would be violated using current observations at the LHAASO.展开更多
TALYS calculations were performed to obtain the theoretical proton capture cross-sections on the p-nuclei.A short review on the status of related experimental studies was also conducted.Some basic properties such as Q...TALYS calculations were performed to obtain the theoretical proton capture cross-sections on the p-nuclei.A short review on the status of related experimental studies was also conducted.Some basic properties such as Q-values,Coulomb barrier,Gamow peak,Gamow Window,and decay properties of the parent and daughter nuclei were studied.Various experimental parameters,e.g.,beam energy,beam current,targets,and detectors,used in experimental investigations reported in the literature,were tabulated.The results of the TALYS calculations in the Gamow region were compared with the corresponding experimental values wherever available.This study is expected to facilitate the planning of future experiments.展开更多
文摘The real-time monitoring of environmental radiation dose for nuclear fa-cilities is an important part of safety, in order to guarantee the accuracy of the monitoring results regular calibration is necessary. Around nuclear facilities there are so many environmental dosimeters installed dispers-edly, because of its huge quantity, widely distributed, and in real-time monitoring state;it will cost lots of manpower and finance if it were tak-en to calibrate on standard laboratory;what’s more it will make the en-vironment out of control. To solve the problem of the measurement ac-curacy of the stationary gamma radiation dosimeter, an on-site calibra-tion method is proposed. The radioactive source is X-ray spectrum, and the dose reference instrument which has been calibrated by the national standard laboratory is a high pressure ionization. On-site calibration is divided into two parts;firstly the energy response experiment of dosim-eter for high and low energy is done in the laboratory, and the energy response curve is obtained combining with Monte Carlo simulation;sec-ondly experiment is carried out in the field of the measuring dosimeter, and the substitution method to calibrate the dosimeter is used;finally the calibration coefficient is gotten through energy curve correction. In order to verify the accuracy of on-site calibration method, the calibrated dosimeter is test in the standard laboratory and the error is 3.4%. The re-sult shows that the on-site calibration method using X-ray is feasible, and it can improves the accuracy of the measurement results of the stationary γ-ray instrument;what’s more important is that it has great reference value for the radiation safety management and radiation environment evaluation.
基金supported by the National Natural Science Foundation of China(Grant No.61274048)the National Science Associated Foundation of China(Grant No.10876044)
文摘Proposed is a two-dimensional(2D)spectrum analysis system for acquiring the statistical information of radioactive particles on two dimensions,i.e.energy and time.Based on pulse width modulation readout circuit,such a system with 4-channels is designed,which converts the radiation signal into a rectangular pulse signal with pulse width modulated.The pulse width,occurrence time,and pulse count of the rectangular pulses are measured simultaneously with digital counters,so that the 2D spectra on energy and time of the radioactive particles can be obtained efficiently based on bi-parameter statistical analysis.A prototype of this 2D system is tested with gamma rays from 241Am isotopes,from which both the correlated 2D spectra and the independent spectra on energy and time are obtained.The energy spectra of four channels shows all characteristic peaks of 241Am gamma rays,among which the full-energy peak at 59.5keV exhibits energy resolution of about 5-6%,suggesting a good energy resolution and channel uniformity of the system.The regression of the time spectra of the characteristic peaks can give the time constants of each characteristic peak,revealing the time characteristics of the nuclear reactions in the radiative source.
基金supported by the National Natural Science Foundation of China (Grant Nos.10747001, 10873002, and 10847003)the National Basic Research Program of China (Grant No. 2009CB824800), and the Research Foundation of Guangxi University (Grant No. M30520)
文摘Using time-resolved spectral data for a sample of 30 pulses in 27 bright GRBs detected with CGRO/BATSE, we investigate the luminosity-peak energy relation (L-E p relation) in the decay phases of these pulses. A tight L-E p relation is found for most of the pulses, but its power law index is various among pulses, which is normally distributed at 1.84±0.60(1σ) for the pulses in our sample, roughly consistent with the L-E p relation within a GRB and the isotropic gamma-ray energy-E p relation among GRBs. The large scatter of the power law index cannot be explained with both the statistical or observational effects and it may be an intrinsic feature, indicating that no universal L-E p relation would be expected among GRBs/pulses. This may strongly weaken the cosmological use of this relation.
基金supported by the National Basic Research Program of China (Grant No. 2009CB824800)the National Natural Science Foundation of China (Grant No. 10873002)+1 种基金 Guangxi SHI-BAI-QIAN Project (Grant No. 2007201)the Program for 100 Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institutions,and the Research Foundation of Guangxi University (Grant No. M30520)
文摘With the prompt slewing capability of the X-ray and UV-optical telescopes onboard the Swift mission and with the gamma-ray large area telescope onboard the Fermi mission,gamma-ray bursts(GRBs) are now accessible in a full time window and in all electromagnetic wavelengths for the events.Many observational breakthroughs have been made in recent years.I present here a brief review of some observational breakthroughs with the two missions,focusing on how these breakthroughs have revolutionized our understanding of the nature of this phenomenon and puzzles as well as challenges of confronting the conventional models with data.
基金Supported by National Natural Science Foundation of China(40904054)National High Technology Research and Development Program 863(2012AA061803)
文摘A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOGll4) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.
基金Supported in part by the Natural Science Foundation of China (11875053, 12035016)support from the National Postdoctoral Program for Innovative Talents (BX2021303)funded by China Postdoctoral Science Foundation
文摘The Large High Altitude Air Shower Observatory(LHAASO)has reported the measurement of photons with high energies of up to 1.42 PeV from twelve gamma-ray sources.We are concerned with the implications of the LHAASO data on the fate of Lorenz symmetry at such high energy levels;thus,we consider the interaction between gamma rays and photons in the cosmic microwave background(CMB)and compute the optical depth,mean free path,and survival probability of photons from these gamma-ray sources.Employing the threshold value predicted by standard special relativity,the lowest survival probability for observed gamma ray photons is found to be approximately 0.60,which is fairly high and implies that abundant photons with energies above the threshold may reach the Earth without Lorentz symmetry violation.We conclude that it is unreasonable to argue that Lorentz symmetry would be violated using current observations at the LHAASO.
基金funded by DST,Govt.of India,under the WOS-A scheme(Reference No.:SR/WOS-A/PM-68/2017)。
文摘TALYS calculations were performed to obtain the theoretical proton capture cross-sections on the p-nuclei.A short review on the status of related experimental studies was also conducted.Some basic properties such as Q-values,Coulomb barrier,Gamow peak,Gamow Window,and decay properties of the parent and daughter nuclei were studied.Various experimental parameters,e.g.,beam energy,beam current,targets,and detectors,used in experimental investigations reported in the literature,were tabulated.The results of the TALYS calculations in the Gamow region were compared with the corresponding experimental values wherever available.This study is expected to facilitate the planning of future experiments.