The properties of generalized convexity are studied in this paper,as well as an existence Theorem of solutions for a type of generalized quasi-variational inequality is then abtained.
A quasi-variational inequality is proved in paracompact setting which generalizes the results of Zhou Chen andAubin. As applications, two existence theorems on the solutions of optimization problems and social equilib...A quasi-variational inequality is proved in paracompact setting which generalizes the results of Zhou Chen andAubin. As applications, two existence theorems on the solutions of optimization problems and social equilibria ofmetagames are showed which improve and extend the recent results of Kaczynski-Zeidan and Aubin.展开更多
An interval algorlthm for inequality coustrained discrete minimax problems is described, in which the constrained and objective functions are C1 functions. First, based on the penalty function methods, we trans form t...An interval algorlthm for inequality coustrained discrete minimax problems is described, in which the constrained and objective functions are C1 functions. First, based on the penalty function methods, we trans form this problem to unconstrained optimization. Second, the interval extensions of the penalty functions and the test rules of region deletion are discussed. At last, we design an interval algorithm with the bisection rule of Moore. The algorithm provides bounds on both the minimax value and the localization of the minimax points of the problem. Numerical results show that algorithm is reliable and efficiency.展开更多
In this paper, we introduce two new iterative algorithms for finding a common element of the set of solutions of a general equilibrium problem and the set of solutions of the variational inequality for an inverse-stro...In this paper, we introduce two new iterative algorithms for finding a common element of the set of solutions of a general equilibrium problem and the set of solutions of the variational inequality for an inverse-strongly monotone operator and the set of common fixed points of two infinite families of relatively nonexpansive mappings or the set of common fixed points of an infinite family of relatively quasi-nonexpansive mappings in Banach spaces. Then we study the weak convergence of the two iterative sequences. Our results improve and extend the results announced by many others.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this paper, with the use of the friction problem in elasticity as the background, the existence and uniqueness for the solution of the nonlinear, indifferentiable mixed variational inequality are discussed. Its cor...In this paper, with the use of the friction problem in elasticity as the background, the existence and uniqueness for the solution of the nonlinear, indifferentiable mixed variational inequality are discussed. Its corresponding boundary variational inequality and the existence and uniqueness, of solution are given. This provides the theoretical basis for using boundary element method to solve the mixed variational inequality.展开更多
The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational in...The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational inequality problem based on a new smoothing approximation function.The proposed algorithm is proved to be well defined and convergent globally under weaker conditions.展开更多
Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work t...Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work the authors give a predictor corrector interior point algorithm for monotone variational inequality problems. The algorithm was proved to be equivalent to a level 1 perturbed composite Newton method. Computations in the algorithm do not require the initial iteration to be feasible. Numerical results of experiments are presented.展开更多
Many methods have been proposed in the literature for solving the split variational inequality problem.Most of these methods either require that this problem is transformed into an equivalent variational inequality pr...Many methods have been proposed in the literature for solving the split variational inequality problem.Most of these methods either require that this problem is transformed into an equivalent variational inequality problem in a product space,or that the underlying operators are co-coercive.However,it has been discovered that such product space transformation may cause some potential difficulties during implementation and its approach may not fully exploit the attractive splitting nature of the split variational inequality problem.On the other hand,the co-coercive assumption of the underlying operators would preclude the potential applications of these methods.To avoid these setbacks,we propose two new relaxed inertial methods for solving the split variational inequality problem without any product space transformation,and for which the underlying operators are freed from the restrictive co-coercive assumption.The methods proposed,involve projections onto half-spaces only,and originate from an explicit discretization of a dynamical system,which combines both the inertial and relaxation techniques in order to achieve high convergence speed.Moreover,the sequence generated by these methods is shown to converge strongly to a minimum-norm solution of the problem in real Hilbert spaces.Furthermore,numerical implementations and comparisons are given to support our theoretical findings.展开更多
In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the ...In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the Katutani-Ky Fan theorem for multivalued maps is employed to prove a new existencetheorem for the GQVI. We also study a nonlinear optimal control problem driven by the GQVI and givesufficient conditions ensuring the existence of an optimal control. Finally, we illustrate the applicability of thetheoretical results in the study of a complicated Oseen problem for non-Newtonian fluids with a nonmonotone andmultivalued slip boundary condition (i.e., a generalized friction constitutive law), a generalized leak boundarycondition, a unilateral contact condition of Signorini’s type and an implicit obstacle effect, in which themultivalued slip boundary condition is described by the generalized Clarke subgradient, and the leak boundarycondition is formulated by the convex subdifferential operator for a convex superpotential.展开更多
Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted...Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.展开更多
To solve the inequality problem, an adjustable entropy method is proposed. An inequality problem can be transformed into a minimax problem which is nondifferentiable; then an adjustable entropy is used to smooth the m...To solve the inequality problem, an adjustable entropy method is proposed. An inequality problem can be transformed into a minimax problem which is nondifferentiable; then an adjustable entropy is used to smooth the minimax problem. The solution of inequalities can be approached by using a BFGS algorithm of the standard optimization method. Some properties of the new approximate function are presented and then the global convergence are given according to the algorithm. Two numerical examples illustrate that the proposed method is efficient and is superior to the former ones.展开更多
A new variational inequality formulation for seepage problems with free surfaces was presented, in which a boundary condition of (Signorini's) type was prescribed over the potential seepage surfaces. This made the...A new variational inequality formulation for seepage problems with free surfaces was presented, in which a boundary condition of (Signorini's) type was prescribed over the potential seepage surfaces. This made the singularity of seepage points eliminated and the location of seepage points determined. Compared to other variational formulations, the proposed formulation owns better numerical stability.展开更多
In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and exter...In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and external complementarity conditions is proposed. The external complementarity condition provides the free boundary condition. while the internal complemententarity condition gives the interface of the elastic and plastic regions. We prove that this bicomplementarity problem is equivalent to a nonlinear variational inequality The dual variational inequality is also developed.It is shown that the dual variational inequality is much easier than the primalvariational problem. Application to limit analysis is illustrated.展开更多
A new bilevel generalized mixed equilibrium problem (BGMEP) involving generalized mixed variational-like inequality problems (GMVLIPs) is introduced and studied in the reflexive Banach spaces. First, an auxiliary ...A new bilevel generalized mixed equilibrium problem (BGMEP) involving generalized mixed variational-like inequality problems (GMVLIPs) is introduced and studied in the reflexive Banach spaces. First, an auxiliary generalized mixed equilibrium problem (AGMEP) is introduced to compute the approximate solutions of the BGMEP involving the GMVLIPs. By using a minimax inequality, the existence and the unique- ness of solutions of the AGMEP are proved under mild conditions without any coercive assumptions. By using an auxiliary principle technique, the new iterative algorithms are proposed and analyzed, with which the approximate solutions of the BGMEP are computed. The strong convergence of the iterative sequence generated by the algorithms is shown under mild conditions without any coercive assumptions. These new results can generalize some recent results in this field.展开更多
The purpose of this paper is to investigate the problem of finding the common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of an equilibrium problem and the set of ...The purpose of this paper is to investigate the problem of finding the common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of an equilibrium problem and the set of solutions of the variational inequality prob- lem for a relaxed cocoercive and Lipschitz continuous mapping in Hilbert spaces. Then, we show that the sequence converges strongly to a common element of the above three sets under some parameter controlling conditions, which are connected with Yao, Liou, Yao[17], Takahashi[12] and many others.展开更多
The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solut...The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solutions of a mixed equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of the variational inequality for a relaxed cocoercive mapping in a real Hilbert space. In addition, we obtain some applications by using this result. The results obtained in this paper generalize and refine some known results in the current literature.展开更多
A new class of general multivalued mixed implicit quasi-variational inequalities in a real Hilbert space was introduced, which includes the known class of generalized mixed implicit quasi-variational inequalities as a...A new class of general multivalued mixed implicit quasi-variational inequalities in a real Hilbert space was introduced, which includes the known class of generalized mixed implicit quasi-variational inequalities as a special case , introduced and studied by Ding Xie-ping . The auxiliary variational principle technique was applied to solve this class of general multivalued mixed implicit quasi-variational inequalities. Firstly, a new auxiliary variational inequality with a proper convex , lower semicontinuous , binary functional was defined and a suitable functional was chosen so that its unique minimum point is equivalent to the solution of such an auxiliary variational inequality . Secondly , this auxiliary variational inequality was utilized to construct a new iterative algorithm for computing approximate solutions to general multivalued mixed implicit quasi-variational inequalities . Here , the equivalence guarantees that the algorithm can generate a sequence of approximate solutions. Finally, the existence of solutions and convergence of approximate solutions for general multivalued mixed implicit quasi-variational inequalities are proved. Moreover, the new convergerce criteria for the algorithm were provided. Therefore, the results give an affirmative answer to the open question raised by M. A . Noor, and extend and improve the earlier and recent results for various variational inequalities and complementarity problems including the corresponding results for mixed variational inequalities, mixed quasi-variational inequalities and quasi-complementarity problems involving the single-valued and set- valued mappings in the recent literature .展开更多
Given a complete graph with edge-weights satisfying parameterized triangle inequality, we consider the maximum Hamilton path problem and design some approximation algorithms.
One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deri...One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.展开更多
文摘The properties of generalized convexity are studied in this paper,as well as an existence Theorem of solutions for a type of generalized quasi-variational inequality is then abtained.
文摘A quasi-variational inequality is proved in paracompact setting which generalizes the results of Zhou Chen andAubin. As applications, two existence theorems on the solutions of optimization problems and social equilibria ofmetagames are showed which improve and extend the recent results of Kaczynski-Zeidan and Aubin.
文摘An interval algorlthm for inequality coustrained discrete minimax problems is described, in which the constrained and objective functions are C1 functions. First, based on the penalty function methods, we trans form this problem to unconstrained optimization. Second, the interval extensions of the penalty functions and the test rules of region deletion are discussed. At last, we design an interval algorithm with the bisection rule of Moore. The algorithm provides bounds on both the minimax value and the localization of the minimax points of the problem. Numerical results show that algorithm is reliable and efficiency.
文摘In this paper, we introduce two new iterative algorithms for finding a common element of the set of solutions of a general equilibrium problem and the set of solutions of the variational inequality for an inverse-strongly monotone operator and the set of common fixed points of two infinite families of relatively nonexpansive mappings or the set of common fixed points of an infinite family of relatively quasi-nonexpansive mappings in Banach spaces. Then we study the weak convergence of the two iterative sequences. Our results improve and extend the results announced by many others.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘In this paper, with the use of the friction problem in elasticity as the background, the existence and uniqueness for the solution of the nonlinear, indifferentiable mixed variational inequality are discussed. Its corresponding boundary variational inequality and the existence and uniqueness, of solution are given. This provides the theoretical basis for using boundary element method to solve the mixed variational inequality.
基金Supported by the NNSF of China(11071041)Supported by the Fujian Natural Science Foundation(2009J01002)Supported by the Fujian Department of Education Foundation(JA11270)
文摘The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational inequality problem based on a new smoothing approximation function.The proposed algorithm is proved to be well defined and convergent globally under weaker conditions.
文摘Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work the authors give a predictor corrector interior point algorithm for monotone variational inequality problems. The algorithm was proved to be equivalent to a level 1 perturbed composite Newton method. Computations in the algorithm do not require the initial iteration to be feasible. Numerical results of experiments are presented.
基金supported by the University of KwaZulu-Natal(UKZN)Doctoral Scholarshipsupported by the National Research Foundation(NRF)South Africa(S&F-DSI/NRF Free Standing Postdoctoral Fellowship(120784)supported by the National Research Foundation(NRF)South Africa Incentive Funding for Rated Researchers(119903).
文摘Many methods have been proposed in the literature for solving the split variational inequality problem.Most of these methods either require that this problem is transformed into an equivalent variational inequality problem in a product space,or that the underlying operators are co-coercive.However,it has been discovered that such product space transformation may cause some potential difficulties during implementation and its approach may not fully exploit the attractive splitting nature of the split variational inequality problem.On the other hand,the co-coercive assumption of the underlying operators would preclude the potential applications of these methods.To avoid these setbacks,we propose two new relaxed inertial methods for solving the split variational inequality problem without any product space transformation,and for which the underlying operators are freed from the restrictive co-coercive assumption.The methods proposed,involve projections onto half-spaces only,and originate from an explicit discretization of a dynamical system,which combines both the inertial and relaxation techniques in order to achieve high convergence speed.Moreover,the sequence generated by these methods is shown to converge strongly to a minimum-norm solution of the problem in real Hilbert spaces.Furthermore,numerical implementations and comparisons are given to support our theoretical findings.
基金The first author was supported by the Guangxi Natural Science Foundation of China(Grant No.2021GXNSFFA196004)National Natural Science Foundation of China(Grant No.12001478)+4 种基金Horizon 2020 of the European Union(Grant No.823731 CONMECH)National Science Center of Poland(Grant No.2017/25/N/ST1/00611)The second author was supported by National Science Foundation of USA(Grant No.DMS 1720067)The third author was supported by the National Science Center of Poland(Grant No.2021/41/B/ST1/01636)the Ministry of Science and Higher Education of Poland(Grant Nos.4004/GGPJII/H2020/2018/0 and 440328/PnH2/2019)。
文摘In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the Katutani-Ky Fan theorem for multivalued maps is employed to prove a new existencetheorem for the GQVI. We also study a nonlinear optimal control problem driven by the GQVI and givesufficient conditions ensuring the existence of an optimal control. Finally, we illustrate the applicability of thetheoretical results in the study of a complicated Oseen problem for non-Newtonian fluids with a nonmonotone andmultivalued slip boundary condition (i.e., a generalized friction constitutive law), a generalized leak boundarycondition, a unilateral contact condition of Signorini’s type and an implicit obstacle effect, in which themultivalued slip boundary condition is described by the generalized Clarke subgradient, and the leak boundarycondition is formulated by the convex subdifferential operator for a convex superpotential.
基金supported by the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the National Natural Science Foundation of China(12071431)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.
文摘To solve the inequality problem, an adjustable entropy method is proposed. An inequality problem can be transformed into a minimax problem which is nondifferentiable; then an adjustable entropy is used to smooth the minimax problem. The solution of inequalities can be approached by using a BFGS algorithm of the standard optimization method. Some properties of the new approximate function are presented and then the global convergence are given according to the algorithm. Two numerical examples illustrate that the proposed method is efficient and is superior to the former ones.
文摘A new variational inequality formulation for seepage problems with free surfaces was presented, in which a boundary condition of (Signorini's) type was prescribed over the potential seepage surfaces. This made the singularity of seepage points eliminated and the location of seepage points determined. Compared to other variational formulations, the proposed formulation owns better numerical stability.
文摘In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and external complementarity conditions is proposed. The external complementarity condition provides the free boundary condition. while the internal complemententarity condition gives the interface of the elastic and plastic regions. We prove that this bicomplementarity problem is equivalent to a nonlinear variational inequality The dual variational inequality is also developed.It is shown that the dual variational inequality is much easier than the primalvariational problem. Application to limit analysis is illustrated.
基金Project supported by the Scientific Research Fund of Sichuan Normal University(No.09ZDL04)the Leading Academic Discipline Project of Sichuan Province of China(No.SZD0406)
文摘A new bilevel generalized mixed equilibrium problem (BGMEP) involving generalized mixed variational-like inequality problems (GMVLIPs) is introduced and studied in the reflexive Banach spaces. First, an auxiliary generalized mixed equilibrium problem (AGMEP) is introduced to compute the approximate solutions of the BGMEP involving the GMVLIPs. By using a minimax inequality, the existence and the unique- ness of solutions of the AGMEP are proved under mild conditions without any coercive assumptions. By using an auxiliary principle technique, the new iterative algorithms are proposed and analyzed, with which the approximate solutions of the BGMEP are computed. The strong convergence of the iterative sequence generated by the algorithms is shown under mild conditions without any coercive assumptions. These new results can generalize some recent results in this field.
基金Supported by King Mongkut's University of Technology Thonburi.KMUTT,(CSEC Project No.E01008)supported by the Faculty of Applied Liberal Arts RMUTR Research Fund and King Mongkut's Diamond scholarship for fostering special academic skills by KMUTT
文摘The purpose of this paper is to investigate the problem of finding the common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of an equilibrium problem and the set of solutions of the variational inequality prob- lem for a relaxed cocoercive and Lipschitz continuous mapping in Hilbert spaces. Then, we show that the sequence converges strongly to a common element of the above three sets under some parameter controlling conditions, which are connected with Yao, Liou, Yao[17], Takahashi[12] and many others.
文摘The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solutions of a mixed equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of the variational inequality for a relaxed cocoercive mapping in a real Hilbert space. In addition, we obtain some applications by using this result. The results obtained in this paper generalize and refine some known results in the current literature.
基金the Teaching and Research Award Fund for Qustanding Young Teachers in Higher Education Institutions of MOE, PRC the Special Funds for Major Specialities of Shanghai Education Committee+1 种基金the Department Fund of ScienceTechnology in Shanghai Higher Educ
文摘A new class of general multivalued mixed implicit quasi-variational inequalities in a real Hilbert space was introduced, which includes the known class of generalized mixed implicit quasi-variational inequalities as a special case , introduced and studied by Ding Xie-ping . The auxiliary variational principle technique was applied to solve this class of general multivalued mixed implicit quasi-variational inequalities. Firstly, a new auxiliary variational inequality with a proper convex , lower semicontinuous , binary functional was defined and a suitable functional was chosen so that its unique minimum point is equivalent to the solution of such an auxiliary variational inequality . Secondly , this auxiliary variational inequality was utilized to construct a new iterative algorithm for computing approximate solutions to general multivalued mixed implicit quasi-variational inequalities . Here , the equivalence guarantees that the algorithm can generate a sequence of approximate solutions. Finally, the existence of solutions and convergence of approximate solutions for general multivalued mixed implicit quasi-variational inequalities are proved. Moreover, the new convergerce criteria for the algorithm were provided. Therefore, the results give an affirmative answer to the open question raised by M. A . Noor, and extend and improve the earlier and recent results for various variational inequalities and complementarity problems including the corresponding results for mixed variational inequalities, mixed quasi-variational inequalities and quasi-complementarity problems involving the single-valued and set- valued mappings in the recent literature .
文摘Given a complete graph with edge-weights satisfying parameterized triangle inequality, we consider the maximum Hamilton path problem and design some approximation algorithms.
文摘One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.