In this paper,by using scalarization techniques and a minimax strategy,error bound results in terms of gap functions for a generalized mixed vector equilibrium problem are established,where the solutions for vector pr...In this paper,by using scalarization techniques and a minimax strategy,error bound results in terms of gap functions for a generalized mixed vector equilibrium problem are established,where the solutions for vector problems may be general sets under natural assumptions,but are not limited to singletons.The other essentially equivalent approach via a separation principle is analyzed.Special cases to the classical vector equilibrium problem and vector variational inequality are also discussed.展开更多
基金This research was supported by the National Natural Science Foundation of China(Nos.11301567 and 11571055)the Fundamental Research Funds for the Central Universities(No.106112015CDJXY100002).
文摘In this paper,by using scalarization techniques and a minimax strategy,error bound results in terms of gap functions for a generalized mixed vector equilibrium problem are established,where the solutions for vector problems may be general sets under natural assumptions,but are not limited to singletons.The other essentially equivalent approach via a separation principle is analyzed.Special cases to the classical vector equilibrium problem and vector variational inequality are also discussed.
基金Supported by the Guizhou Province Natural Science Foundation of China([2011]2093)the Natural Scientific Research Foundation of Guizhou Provincial Education Department((2012)058)