A new kind of weight-Ar^λ3 (λ1, λ2, Ω)-weight is used to prove the local and global integral inequalities for conjugate A-harmonic tensors, which can be regarded as generalizations of the classical results. Some...A new kind of weight-Ar^λ3 (λ1, λ2, Ω)-weight is used to prove the local and global integral inequalities for conjugate A-harmonic tensors, which can be regarded as generalizations of the classical results. Some applications of the above results to quasiregular mappings are given.展开更多
The Bloch constants for quasiregular harmonic mappings and open planar harmonic mappings are considered. Better estimates are obtained. The results, presented in this paper, improve the one made by Chen et al. and Gri...The Bloch constants for quasiregular harmonic mappings and open planar harmonic mappings are considered. Better estimates are obtained. The results, presented in this paper, improve the one made by Chen et al. and Grigoryan.展开更多
We prove two-Ar^λ(Ω)-weighted imbedding theorems for differential forms. These results can be used to study the weighted norms of the homotopy operator T from the Banach space LV(D, ∧^l) to the Sobolev space W^...We prove two-Ar^λ(Ω)-weighted imbedding theorems for differential forms. These results can be used to study the weighted norms of the homotopy operator T from the Banach space LV(D, ∧^l) to the Sobolev space W^1,p(D, ∧^l-1), l = 0, 1,..., n, and to establish the weighted L^p-estimates for differential forms. Finally, we give some applications of the above results to quasiregular mappings.展开更多
基金Supported by the Natural Science Foundation of Hebei Province(07M003)the Doctoral Fund of Hebei Provincial Commission of Education(B2004103)
文摘A new kind of weight-Ar^λ3 (λ1, λ2, Ω)-weight is used to prove the local and global integral inequalities for conjugate A-harmonic tensors, which can be regarded as generalizations of the classical results. Some applications of the above results to quasiregular mappings are given.
基金supported by the Research Foundation for Doctor Programme (Grant No. 20050574002)the National Natural Science Foundation of China (Grant No. 10471048)
文摘The Bloch constants for quasiregular harmonic mappings and open planar harmonic mappings are considered. Better estimates are obtained. The results, presented in this paper, improve the one made by Chen et al. and Grigoryan.
基金The research supported by National Natural Science Foundation of China (A0324610)Scientific Research Foundation of Hebei Polytechnic University (200520).
文摘We prove two-Ar^λ(Ω)-weighted imbedding theorems for differential forms. These results can be used to study the weighted norms of the homotopy operator T from the Banach space LV(D, ∧^l) to the Sobolev space W^1,p(D, ∧^l-1), l = 0, 1,..., n, and to establish the weighted L^p-estimates for differential forms. Finally, we give some applications of the above results to quasiregular mappings.