This study explores the dynamic interaction between environmentally sustainable plasma enhancer and quencher agents during the incorporation of SiO_(2) into a TiO_(2) layer,with the primary objective of simultaneously...This study explores the dynamic interaction between environmentally sustainable plasma enhancer and quencher agents during the incorporation of SiO_(2) into a TiO_(2) layer,with the primary objective of simultaneously augmenting protective and bioactive attributes.This enhancement is realized through the synergistic utilization of Tetraethyl orthosilicate(TE)and Stevia(ST)within a plasma-assisted oxidation process.To achieve this goal,Ti–6Al–4V alloy underwent oxidation in an electrolyte solution containing acetate-glycerophosphate,with the addition of TE and ST separately and in combination.TE,as a silicon oxide(SiO_(2))precursor,facilitates the creation of a calcium-rich,rough,porous layer by undergoing hydrolysis to generate silanol groups(Si–OH),which subsequently condense into silicon-oxygen-silicon(Si–O–Si)bonds,resulting in SiO_(2) formation.In contrast,ST acts as a plasma quencher,absorbing highly reactive plasma species during the oxidation process,reducing energy levels,and diminishing sparking intensity.The combination of TE and ST results in moderate sparking,balancing Stevia's quenching effect and TE's sparking influence.As a result,this coating exhibits enhanced corrosion resistance and bioactivity compared to using either ST or TE alone.The study highlights the potential of this synergistic approach for advanced TiO_(2)-based coatings.展开更多
The total rate constants of the reaction of six antioxidants with singlet oxygen were measured by fluorospectroscopy,and the effects of these antioxidants on the photostability of the dyes were also investigated kinet...The total rate constants of the reaction of six antioxidants with singlet oxygen were measured by fluorospectroscopy,and the effects of these antioxidants on the photostability of the dyes were also investigated kinetically.The results reveal that the six antioxidants are the effective quenchers of singlet oxygen (~1O_2)and can increase the photostability of the dyes.The power of metal chelates to quench ~1O_2 is the strongest,and the chelates show the most effects on the photostability of the dyes.The photostability of the dyes has something to do with the relative amount of the antioxidant used.展开更多
Using a photosensitizer(PS),light,and oxygen,photodynamic therapy creates cytotoxic reactive oxygen species,such as singlet oxygen(1O2),that kill cancer cells.Many cancer cell lines have up to 300 times more folic aci...Using a photosensitizer(PS),light,and oxygen,photodynamic therapy creates cytotoxic reactive oxygen species,such as singlet oxygen(1O2),that kill cancer cells.Many cancer cell lines have up to 300 times more folic acid receptors than healthy cells.Therefore,folic acid is often used to improve selectivity of PSs.Photobleaching poses a disadvantage for PSs.In this paper,we have studied the photoinduced changes of meso-substituted cationic pyridyl porphyrins in the presence of folic acid using uorescence and absorption spectroscopy.In this work,it was demonstrated that L-histidine,which is a 1O2 quencher,and D-mannitol,which is a hydroxyl radical quencher,can reduce photobleaching of cationic porphyrins and their interaction products with FA.This implies both singlet oxygen and hydroxyl radicals are involved in photobleaching.Additionally,our study revealed certain important features of the photobleaching of cationic porphyrins in the presence of folic acid.展开更多
基金supported by National Research Foundation of Korea:2021R1A4A1030243RS-2023-00222390)supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘This study explores the dynamic interaction between environmentally sustainable plasma enhancer and quencher agents during the incorporation of SiO_(2) into a TiO_(2) layer,with the primary objective of simultaneously augmenting protective and bioactive attributes.This enhancement is realized through the synergistic utilization of Tetraethyl orthosilicate(TE)and Stevia(ST)within a plasma-assisted oxidation process.To achieve this goal,Ti–6Al–4V alloy underwent oxidation in an electrolyte solution containing acetate-glycerophosphate,with the addition of TE and ST separately and in combination.TE,as a silicon oxide(SiO_(2))precursor,facilitates the creation of a calcium-rich,rough,porous layer by undergoing hydrolysis to generate silanol groups(Si–OH),which subsequently condense into silicon-oxygen-silicon(Si–O–Si)bonds,resulting in SiO_(2) formation.In contrast,ST acts as a plasma quencher,absorbing highly reactive plasma species during the oxidation process,reducing energy levels,and diminishing sparking intensity.The combination of TE and ST results in moderate sparking,balancing Stevia's quenching effect and TE's sparking influence.As a result,this coating exhibits enhanced corrosion resistance and bioactivity compared to using either ST or TE alone.The study highlights the potential of this synergistic approach for advanced TiO_(2)-based coatings.
基金the National Natural Science Foundation of China
文摘The total rate constants of the reaction of six antioxidants with singlet oxygen were measured by fluorospectroscopy,and the effects of these antioxidants on the photostability of the dyes were also investigated kinetically.The results reveal that the six antioxidants are the effective quenchers of singlet oxygen (~1O_2)and can increase the photostability of the dyes.The power of metal chelates to quench ~1O_2 is the strongest,and the chelates show the most effects on the photostability of the dyes.The photostability of the dyes has something to do with the relative amount of the antioxidant used.
基金supported by the RA MESCS Science Committee and Belarusian Republican Foundation for Fundamental Research in the frames of the joint research project SC No.21SC-BRFFR-1F007 and BRFFR Grant No.21ARM-014 accordingly,as well as from the Ministry of Science and Higher Education of Russian Federation within the framework of a state assignment(project No.FSRR-2023-0007)。
文摘Using a photosensitizer(PS),light,and oxygen,photodynamic therapy creates cytotoxic reactive oxygen species,such as singlet oxygen(1O2),that kill cancer cells.Many cancer cell lines have up to 300 times more folic acid receptors than healthy cells.Therefore,folic acid is often used to improve selectivity of PSs.Photobleaching poses a disadvantage for PSs.In this paper,we have studied the photoinduced changes of meso-substituted cationic pyridyl porphyrins in the presence of folic acid using uorescence and absorption spectroscopy.In this work,it was demonstrated that L-histidine,which is a 1O2 quencher,and D-mannitol,which is a hydroxyl radical quencher,can reduce photobleaching of cationic porphyrins and their interaction products with FA.This implies both singlet oxygen and hydroxyl radicals are involved in photobleaching.Additionally,our study revealed certain important features of the photobleaching of cationic porphyrins in the presence of folic acid.