期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Quenching sensitivity and heterogeneous precipitation behavior of AA7136 alloy 被引量:3
1
作者 Zhi-min MA Yong ZHANG +2 位作者 Sheng-dan LIU Yun-lai DENG Xin-ming ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3356-3369,共14页
The quenching sensitivity of AA7136 alloy was investigated by time−temperature−property(TTP)diagrams,and the heterogeneous precipitation behavior during isothermal holding was investigated using scanning electron micr... The quenching sensitivity of AA7136 alloy was investigated by time−temperature−property(TTP)diagrams,and the heterogeneous precipitation behavior during isothermal holding was investigated using scanning electron microscopy,scanning transmission electron microscopy and high resolution transmission electron microscopy.Based on 99.5%TTP diagram,the nose temperature is determined to be about 346℃ with the transformation time of about 0.245 s.The precipitation ofη(MgZn_(2)),T(Al_(2)Zn_(3)Mg_(3)),S(Al_(2)CuMg)or Cu−Zn-rich Y phases can be found depending on isothermal holding temperature and time,and it is described in a time−temperature−precipitation diagram.The size and area fraction of isothermal holding induced phase particles increase,which results in the decrease of hardness of samples after aging.The quantitative contribution to loss of hardness by grain boundaries/subgrain boundaries and dispersoids in the matrix is discussed based on the amount of heterogeneous precipitation related to them. 展开更多
关键词 AA7136 alloy quenching sensitivity time−temperature−property diagrams heterogeneous precipitation
下载PDF
Quench sensitivity and microstructure character of high strength AA7050 被引量:25
2
作者 李培跃 熊柏青 +4 位作者 张永安 李志辉 朱宝宏 王锋 刘红伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期268-274,共7页
The effect of quenching rate on the electrical conductivity and microstructure of thick plates of incumbent AA7050 was investigated by employing Jominy end quench test. The electrical conductivity measurement and micr... The effect of quenching rate on the electrical conductivity and microstructure of thick plates of incumbent AA7050 was investigated by employing Jominy end quench test. The electrical conductivity measurement and microstructural observation were conducted at different distances from the quenched end. The results indicate that the average cooling rates decrease with increasing the distance from the quenched end of the bar in the quench sensitive temperature range. However, the electrical conductivity increases with the increase of distance from the quenched end. The surface parts of the plate were fully recrystallized, while partial recrystallization took place at the quarter and center parts of the plate. The quench induced grain boundary precipitates became remarkably coarser and discontinuously distributed with increasing distance from the quenched end of the bar. Plenty of heterogeneous precipitates were observed to nucleate on A13Zr dispersoids when the distance from the quenched end was greater than 38mm. 展开更多
关键词 Jominy end quench test quench sensitivity cooling rate quench induced precipitates
下载PDF
Effect of homogenization time on quench sensitivity of 7085 aluminum alloy 被引量:11
3
作者 郑玉林 李承波 +2 位作者 刘胜胆 邓运来 张新明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2275-2281,共7页
The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission e... The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that with the increase of homogenization time from 48 h to 384 h, quench sensitivity increased slightly as the largest difference in the hardness was increased from 5.2% to 6.9% in the end-quenched and aged specimens. Prolonging homogenization had little effect on the grain structure, but improved the dissolution of soluble T phase and resulted in larger Al3Zr dispersoids with a low number density. Some small quench-induced η phase particles on Al3Zr dispersoids were observed inside grains during slow quenching, which decreased hardness after subsequent aging. The change in the character of Al3Zr dispersoids exerted slight influence on quench sensitivity. 展开更多
关键词 7085 aluminum alloy HOMOGENIZATION end quenching quench sensitivity Al3Zr dispersoids equilibrium η phase
下载PDF
Time-temperature-property curves for quench sensitivity of 6063 aluminum alloy 被引量:6
4
作者 李红英 曾翠婷 +2 位作者 韩茂盛 刘蛟蛟 鲁晓超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期38-45,共8页
The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show t... The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress. 展开更多
关键词 6063 aluminum alloy quench sensitivity HARDNESS time-temperature-property curve strengthening phase heterogeneous precipitation residual stress
下载PDF
Quench sensitivity of 6351 aluminum alloy 被引量:2
5
作者 李慎兰 黄志其 +2 位作者 陈维平 刘志铭 戚文军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期46-52,共7页
The quench sensitivity of 6351 alloy was determined by the time temperature-transformation(TTT) curves and time temperature-property(TTP) curves by an interrupted quench technique with measurement of as-aged hardn... The quench sensitivity of 6351 alloy was determined by the time temperature-transformation(TTT) curves and time temperature-property(TTP) curves by an interrupted quench technique with measurement of as-aged hardness and as-quenched electro-conductivity.The microstructure transformation during isothermal treatment was studied by the transmission electron microscopy(TEM) and Avrami equation.The results showed that the electro-conductivity of the 6351 alloy increased and the hardness decreased with prolonging the holding time at a certain isothermal temperature.The TEM observation indicated that the supersaturated solid solution decomposed and needles β″ precipitated at the initial stage of isothermal holding.With the prolongation of holding time at the nose temperature,rod β' and plate β phases formed.The isothermal transformation rate at 360℃ was the fastest,and became slow at 280℃ and reached the slowest at 440℃.The nose temperatures of the TTT and TTP curves were about 360℃ and the high quench sensitive temperature range was 230 430℃.The quench factor analysis indicated that the cooling rate should be more than 15℃/s in the quench sensitive areas in order to get optimal mechanical properties. 展开更多
关键词 6351 alloy quench sensitivity MICROSTRUCTURE cooling rate quench factor analysis TTT curve TTP curve
下载PDF
Grain structure effect on quench sensitivity of Al-Zn-Mg-Cu-Cr alloy 被引量:1
6
作者 李承波 韩素琦 +2 位作者 刘胜胆 邓运来 张新明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2276-2282,共7页
The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscop... The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and scanning transmission electron microscopy. The results show that with the decrease of quenching rate from 960 ℃/s to 2 ℃/s, the hardness after aging is decreased by about 33% for the homogenized and solution heat treated alloy(H-alloy) with large equiaxed grains and about 43% for the extruded and solution heat treated alloy(E-alloy) with elongated grains and subgrains. Cr-containing dispersoids make contribution to about 33% decrement in hardness of the H-alloy due to slow quenching; while in the E-alloy, the amount of(sub) grain boundaries is increased by about one order of magnitude, which leads to a further 10% decrement in hardness due to slow quenching and therefore higher quench sensitivity. 展开更多
关键词 grain structure Al-Zn-Mg-Cu-Cr alloy DISPERSOIDS quench sensitivity
下载PDF
Quench sensitivity and microstructures of high-Zn-content Al−Zn−Mg−Cu alloys with different Cu contents and Sc addition 被引量:24
7
作者 Ying-hao PENG Chong-yu LIU +2 位作者 Li-li WEI Hong-jie JIANG Zhen-jiang GE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期24-35,共12页
The Zn,Cu,and Sc contents of 7xxx Al alloys were adjusted according to the chemical composition of a 7085 Al alloy,and the effects of Zn and Cu contents and Sc addition on the microstructures,hardness,and quench sensi... The Zn,Cu,and Sc contents of 7xxx Al alloys were adjusted according to the chemical composition of a 7085 Al alloy,and the effects of Zn and Cu contents and Sc addition on the microstructures,hardness,and quench sensitivity of the 7xxx Al alloys were studied.The alloys with high Zn content and Sc addition exhibited higher hardness than the 7085 alloy at the position 3 mm away from the quenching end.The density ofηand T phases increased with the increase in Zn and Cu contents,and the Sc addition led to the formation of the Y phase and moreηphases at the position 120 mm away from the quenching end.Compared with the 7085 alloy,the high Zn−high Cu and Sc-added alloys exhibited higher quench sensitivity,while the simultaneous increase in Zn content and decrease in Cu content could enhance the hardness and reduce the quench sensitivity of the 7085 alloy. 展开更多
关键词 Al−Zn−Mg−Cu alloy quench sensitivity Al3(Sc Zr) Y phase grain boundary
下载PDF
Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy 被引量:18
8
作者 唐建国 陈慧 +4 位作者 张新明 刘胜胆 刘文军 欧阳惠 李红萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1255-1263,共9页
The effects of quenching and aging (T6, T7 and RRA) on the microstructural evolution of an A1-Zn-Mg-Cu alloy were investigated by hardness test, optical microscopy (OM), transmission electron microscopy (TEM) an... The effects of quenching and aging (T6, T7 and RRA) on the microstructural evolution of an A1-Zn-Mg-Cu alloy were investigated by hardness test, optical microscopy (OM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) measurements. It is found that the hardness of T6 aged sample after water-quenching is the highest. The quench sensitivities of T7 and RRA are almost the same, which are 1.2% higher than that of T6. TEM observation shows that the quench sensitivity for the studied alloy is mainly caused by heterogeneous precipitation during slow quenching. Many r/phases precipitate on A13Zr dispersoids inside recrystallized grains and at (sub) grain boundaries, while T and S phases form in the substructure with high density of dislocations and defects. After aging, the η' precipitates are coarser in the vicinity of equilibrium r/phase. However, the size and morphology of the precipitates show different characteristics among T6, T7 and RRA treatments. The DSC results are highly consistent with the TEM observation. The DSC curves of T6 aged samples are different from those of T7 and RRA aged samples, which also reflects the differences on the microstructure. 展开更多
关键词 Al-Zn-Mg-Cu alloy quenching quench sensitivity aging PRECIPITATION
下载PDF
Influence of pre-stretching on quench sensitive effect of high-strength Al-Zn-Mg-Cu-Zr alloy sheet 被引量:9
9
作者 HE Ke-zhun LI Qun +2 位作者 LIU Sheng-dan ZHANG Xin-ming ZHOU Ke-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2660-2669,共10页
The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and different... The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC. 展开更多
关键词 high-strength aluminum alloy PRE-STRETCHING tensile properties quench sensitive effect strengthening precipitates
下载PDF
Quench sensitivity of Al-Cu-Mg alloy thick plate
10
作者 Yuan Yin Bing-Hui Luo +1 位作者 Zhen-Hai Bai Hui-Bo Jing 《Rare Metals》 SCIE EI CAS CSCD 2023年第9期3161-3169,共9页
The quench sensitivity of Al-Cu-Mg alloy was investigated at different thicknesses of the thick plate.The quenching process was simulated via finite element analysis(FEA);time-temperature-property(TTP)curves and time-... The quench sensitivity of Al-Cu-Mg alloy was investigated at different thicknesses of the thick plate.The quenching process was simulated via finite element analysis(FEA);time-temperature-property(TTP)curves and time-temperature-transformation(TTT)curves were obtained through hardness test and differential scanning calorimetry(DSC)test;and the microstructural observation was carried out by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Experimental results exhibit that the quench cooling rate decreases dramatically from the surface to the center of the plate,and the inhomogeneous quenching causes the difference in microstructure.With the decrease in quench cooling rate,constituent particles are coarsening gradually;the quantity of T-phase(Al_(20)Cu_(2)Mn_(3))increases and the S-phase(Al_(2)Cu Mg)decreases.According to the precipitation kinetics analysis,the decrease in S-phase is caused by the increase in precipitate activation energy.So that the center of the plate shows the highest quenching sensitivity,which is consistent with the analysis of time-temperature-property curves and time-temperature-transformation curves. 展开更多
关键词 Al-Cu-Mg alloy Quench sensitivity Precipitation kinetics Time-temperature-property curves MICROSTRUCTURE
原文传递
Quench sensitivity of novel Al-Zn-Mg-Cu alloys containing different Cu contents 被引量:3
11
作者 Jin-Sheng Chen Xi-Wu Li +5 位作者 Bai-Qing Xiong Yony-An Zhang Zhi-Hui Li Hong-Wei Yan Hong-Wei Liu Shu-Hui Huang 《Rare Metals》 SCIE EI CAS CSCD 2020年第12期1395-1401,共7页
The effect of copper content on quench sensitivity in novel Al-Zn-Mg-Cu alloys containing high zinc content was investigated by Jominy end quench test.Electrical conductivity and hardness test,temperature collecting,a... The effect of copper content on quench sensitivity in novel Al-Zn-Mg-Cu alloys containing high zinc content was investigated by Jominy end quench test.Electrical conductivity and hardness test,temperature collecting,and transmission electron microscopy(TEM)technique were adopted for the properties and microstructure characterization of three alloys with different copper contents.The results indicate that the electrical conductivity of all three alloys increases with the increase of distance from the quenched end,while the hardness shows an opposite trend.If the dropping of 10%hardness is defined as the critical evaluation standard of quenching,the depth of quenched layer of AlloysⅠ,Ⅱ,andⅢare 70,55,and 40 mm,respectively.The precipitation behavior on grain boundaries of three alloys is similar except for a little difference in size,while the size of precipitates in grains of AlloyⅢwith higher copper content is larger than those of the other two alloys at the same location.Considering all results,the stability of the supersaturated solid solution of AlloyⅢis lower than those of the other two alloys,meaning that AlloyⅢshows the highest quench sensitivity.Higher copper content leads to higher quench sensitivity in novel Al-Zn-Mg-Cu alloys with the same content of magnesium,zinc,and other trace elements. 展开更多
关键词 Al-Zn-Mg-Cu alloy Copper content Quench sensitivity Jominy end quench test PRECIPITATES
原文传递
Hardness, quench sensitivity, and electrical conductivity of 7xxx Al alloys with high Zn concentrations 被引量:3
12
作者 PENG YingHao LIU ChongYu +2 位作者 MA ZongYi JIANG HongJie HUANG HongFeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第6期953-959,共7页
In this study,7 xxx(Al-Zn-Mg-Cu)alloys with high Zn concentrations were fabricated by increasing the Zn contents of 7085 Al alloys.The hardness,quench sensitivity,and electrical conductivity of the alloys and a 7085 A... In this study,7 xxx(Al-Zn-Mg-Cu)alloys with high Zn concentrations were fabricated by increasing the Zn contents of 7085 Al alloys.The hardness,quench sensitivity,and electrical conductivity of the alloys and a 7085 Al alloy under peak-aged state were studied.The high Zn concentration alloys had higherη′phase densities and lower quantities of Mg solid atoms than the 7085 Al alloy and thus exhibited higher hardness and electrical conductivity.The high Zn concentration alloys also exhibited slightly higher quench sensitivity than 7085 Al alloy,and the depth of the quenching layer of the alloy with 11.27 wt%Zn content reached 100 mm.This work confirmed that the novel 7 xxx alloy with high Zn concentration showed balanced performance,exhibiting enhanced hardness and conductivity and reasonable quench sensitivity compared with the 7085 commercial Al alloy. 展开更多
关键词 Al alloy HARDNESS quench sensitivity electrical conductivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部