Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the eve...Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the ever-growing volume of content that CQAs engender.To clarify the current state of the CQA literature that has used ML and DL,this paper reports a systematic literature review.The goal is to summarise and synthesise the major themes of CQA research related to(i)questions,(ii)answers and(iii)users.The final review included 133 articles.Dominant research themes include question quality,answer quality,and expert identification.In terms of dataset,some of the most widely studied platforms include Yahoo!Answers,Stack Exchange and Stack Overflow.The scope of most articles was confined to just one platform with few cross-platform investigations.Articles with ML outnumber those with DL.Nonetheless,the use of DL in CQA research is on an upward trajectory.A number of research directions are proposed.展开更多
Aiming at the lack of professional knowledge to guide apparel recommendation,an apparel recommendation method based on image design expert knowledge has been proposed.Then,apparel recommendation knowledge graphs have ...Aiming at the lack of professional knowledge to guide apparel recommendation,an apparel recommendation method based on image design expert knowledge has been proposed.Then,apparel recommendation knowledge graphs have been created and a apparel recommendation question and answer(Q&A)system has been designed and implemented.The question templates in the apparel recommendation domain were defined,the task of recognizing the named entities of question sentences was completed by the Bi-directional encoder representations from transformer-Bi-directional long short-term memory-conditional random field(BERT-BiLSTM-CRF)model,and the question template with the highest matching degree to the user’s question was obtained by using term frequency-inverse document frequency(TF-IDF)algorithm.The corresponding cypher graph database query statement was generated to retrieve the knowledge graph for answers,and iFLYTEK’s voice application programming interface(API)was called to implement the Q&A.The experimental results have shown that the Q&A system has a high accuracy rate and application value in the field of apparel recommendations.展开更多
针对专业领域问答系统中推荐专家回答不准确与不及时的问题,提出一种基于兴趣度、权威度、信誉度和最近活跃度的专家推荐混合模型。采用加权的LDA主题模型获得专家兴趣主题分布,采用基于主题的PageRank算法计算专家的权威度;根据专家回...针对专业领域问答系统中推荐专家回答不准确与不及时的问题,提出一种基于兴趣度、权威度、信誉度和最近活跃度的专家推荐混合模型。采用加权的LDA主题模型获得专家兴趣主题分布,采用基于主题的PageRank算法计算专家的权威度;根据专家回答问题的质量计算专家的信誉度,根据专家历史回答问题的时间获得专家的最近活跃度。给出用户问题的分析方法,采用混合模型推荐最适宜的问题服务专家。为了验证模型的可行性和有效性,使用Stack Over Flow真实数据集进行分析实验。实验结果表明该方法能够有效地提高新问题专家推荐的准确率。展开更多
ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the hete...ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the heterogeneous content network is critical to this task.Most traditional methods focus on modeling questions and users based on the textual content left in the community while ignoring the structural properties of heterogeneous CQA networks and always suffering from textual data sparsity issues.Recent approaches take advantage of structural proximities between nodes and attempt to fuse the textual content of nodes for modeling.However,they often fail to distinguish the nodes’personalized preferences and only consider the textual content of a part of the nodes in network embedding learning,while ignoring the semantic relevance of nodes.In this paper,we propose a novel framework that jointly considers the structural proximity relations and textual semantic relevance to model users and questions more comprehensively.Specifically,we learn topology-based embeddings through a hierarchical attentive network learning strategy,in which the proximity information and the personalized preference of nodes are encoded and preserved.Meanwhile,we utilize the node’s textual content and the text correlation between adjacent nodes to build the content-based embedding through a meta-context-aware skip-gram model.In addition,the user’s relative answer quality is incorporated to promote the ranking performance.Experimental results show that our proposed framework consistently and significantly outperforms the state-of-the-art baselines on three real-world datasets by taking the deep semantic understanding and structural feature learning together.The performance of the proposed work is analyzed in terms of MRR,P@K,and MAP and is proven to be more advanced than the existing methodologies.展开更多
文摘Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the ever-growing volume of content that CQAs engender.To clarify the current state of the CQA literature that has used ML and DL,this paper reports a systematic literature review.The goal is to summarise and synthesise the major themes of CQA research related to(i)questions,(ii)answers and(iii)users.The final review included 133 articles.Dominant research themes include question quality,answer quality,and expert identification.In terms of dataset,some of the most widely studied platforms include Yahoo!Answers,Stack Exchange and Stack Overflow.The scope of most articles was confined to just one platform with few cross-platform investigations.Articles with ML outnumber those with DL.Nonetheless,the use of DL in CQA research is on an upward trajectory.A number of research directions are proposed.
文摘Aiming at the lack of professional knowledge to guide apparel recommendation,an apparel recommendation method based on image design expert knowledge has been proposed.Then,apparel recommendation knowledge graphs have been created and a apparel recommendation question and answer(Q&A)system has been designed and implemented.The question templates in the apparel recommendation domain were defined,the task of recognizing the named entities of question sentences was completed by the Bi-directional encoder representations from transformer-Bi-directional long short-term memory-conditional random field(BERT-BiLSTM-CRF)model,and the question template with the highest matching degree to the user’s question was obtained by using term frequency-inverse document frequency(TF-IDF)algorithm.The corresponding cypher graph database query statement was generated to retrieve the knowledge graph for answers,and iFLYTEK’s voice application programming interface(API)was called to implement the Q&A.The experimental results have shown that the Q&A system has a high accuracy rate and application value in the field of apparel recommendations.
文摘针对专业领域问答系统中推荐专家回答不准确与不及时的问题,提出一种基于兴趣度、权威度、信誉度和最近活跃度的专家推荐混合模型。采用加权的LDA主题模型获得专家兴趣主题分布,采用基于主题的PageRank算法计算专家的权威度;根据专家回答问题的质量计算专家的信誉度,根据专家历史回答问题的时间获得专家的最近活跃度。给出用户问题的分析方法,采用混合模型推荐最适宜的问题服务专家。为了验证模型的可行性和有效性,使用Stack Over Flow真实数据集进行分析实验。实验结果表明该方法能够有效地提高新问题专家推荐的准确率。
文摘ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the heterogeneous content network is critical to this task.Most traditional methods focus on modeling questions and users based on the textual content left in the community while ignoring the structural properties of heterogeneous CQA networks and always suffering from textual data sparsity issues.Recent approaches take advantage of structural proximities between nodes and attempt to fuse the textual content of nodes for modeling.However,they often fail to distinguish the nodes’personalized preferences and only consider the textual content of a part of the nodes in network embedding learning,while ignoring the semantic relevance of nodes.In this paper,we propose a novel framework that jointly considers the structural proximity relations and textual semantic relevance to model users and questions more comprehensively.Specifically,we learn topology-based embeddings through a hierarchical attentive network learning strategy,in which the proximity information and the personalized preference of nodes are encoded and preserved.Meanwhile,we utilize the node’s textual content and the text correlation between adjacent nodes to build the content-based embedding through a meta-context-aware skip-gram model.In addition,the user’s relative answer quality is incorporated to promote the ranking performance.Experimental results show that our proposed framework consistently and significantly outperforms the state-of-the-art baselines on three real-world datasets by taking the deep semantic understanding and structural feature learning together.The performance of the proposed work is analyzed in terms of MRR,P@K,and MAP and is proven to be more advanced than the existing methodologies.