期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A real-time and modular approach for quick detection and mechanism exploration of DPIs with different carrier particle sizes 被引量:1
1
作者 Yingtong Cui Ying Huang +8 位作者 Xuejuan Zhang Xiangyun Lu Jun Xue Guanlin Wang Ping Hu Xiao Yue Ziyu Zhao Xin Pan Chuanbin Wu 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第1期437-450,共14页
Dry powder inhalers(DPIs) had been widely used in lung diseases on account of direct pulmonary delivery, good drug stability and satisfactory patient compliance. However, an indistinct understanding of pulmonary deliv... Dry powder inhalers(DPIs) had been widely used in lung diseases on account of direct pulmonary delivery, good drug stability and satisfactory patient compliance. However, an indistinct understanding of pulmonary delivery processes(PDPs) hindered the development of DPIs. Most current evaluation methods explored the PDPs with over-simplified models, leading to uncompleted investigations of the whole or partial PDPs. In the present research, an innovative modular process analysis platform(MPAP) was applied to investigate the detailed mechanisms of each PDP of DPIs with different carrier particle sizes(CPS). The MPAP was composed of a laser particle size analyzer, an inhaler device,an artificial throat and a pre-separator, to investigate the fluidization and dispersion, transportation,detachment and deposition process of DPIs. The release profiles of drug, drug aggregation and carrier were monitored in real-time. The influence of CPS on PDPs and corresponding mechanisms were explored. The powder properties of the carriers were investigated by the optical profiler and Freeman Technology four powder rheometer. The next generation impactor was employed to explore the aerosolization performance of DPIs. The novel MPAP was successfully applied in exploring the comprehensive mechanism of PDPs, which had enormous potential to be used to investigate and develop DPIs. 展开更多
关键词 Dry powder inhaler Carrier particle size Pulmonary delivery process Real-time monitor Quick detection
原文传递
Fluorescent probe gold nanodots to quick detect Cr(VI) via oxidoreduction quenching process 被引量:1
2
作者 Yueqi Zhao Yuanqing Sun +7 位作者 Yingnan Jiang Shanliang Song Tianxin Zhao Yue Zhao Xinyu Wang Baoquan Li Bai Yang Quan Lin 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第1期133-141,共9页
A method is described here for the quickly(<30 s) accurate determination of Cr(VI)(Cr_2O_7^(2-)), based on fluorescent probes gold nanodots(AuNDs, excitation/emission peaks at 395/604 nm) coated with glutathione(GS... A method is described here for the quickly(<30 s) accurate determination of Cr(VI)(Cr_2O_7^(2-)), based on fluorescent probes gold nanodots(AuNDs, excitation/emission peaks at 395/604 nm) coated with glutathione(GSH). The fluorescence of the AuNDs responses linearly to Cr(VI) concentrations, ranging widely from 1 nM to 10 m M with detection limit as low as 0.35 nM. At the same time, the AuNDs is demonstrated highly selective for Cr(VI) detection over other acid group ions and metal ions without any masking reagent. These make probability for practical use. The quenching mechanism is investigated deeply via fluorescent lifetime, XPS and TEM analysis. Different from most reported quenching explanation of aggregation derived from charge attraction, these results verify the redox reaction between Cr_2O_7^(2-)and sulfhydryl(–S) of GSH. The Au(I)–S bonds of AuNDs broke, accompanies with the oxidation of –S to form S–S bonds. As a result, AuNDs cross linked to each other. In the end, the fluorescence quenched. Attractively, the present study provides a new strategy for pollutant detection, such as from harmful Cr(VI) of Cr_2O_7^(2-)to nontoxic Cr(III). 展开更多
关键词 fluorescent probe of Cr(VI) Au nanodots quick and quantitative detection fluorescence quenching mechanism pollutant detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部