In quorum sensing (QS) process, bacteria regulate gene expression by utilizing small signaling molecules called autoinducers in response to a variety of environmental cues. Autoinducer 2 (AI-2), a QS signaling mol...In quorum sensing (QS) process, bacteria regulate gene expression by utilizing small signaling molecules called autoinducers in response to a variety of environmental cues. Autoinducer 2 (AI-2), a QS signaling molecule proposed to be involved in interspecies communication, is produced by many species of gram-negative and gram-positive bacteria. In Escherichia coil and Salmonella typhimurium, the extracellular AI-2 is imported into the cell by a transporter encoded by the lsr operon. Upstream of the lsr operon, there is a divergently transcribed gene encoding LsrR, which was reported previously to repress the transcription of the lsr operon and itself. Here, we have demonstrated for the first time that LsrR represses the transcription of the lsr operon and itself by directly binding to their promoters using gel shift and DNase I footprinting assays. The β-galactosidase reporter assays further suggest that two motifs in both the lsrR and lsrA promoter regions are crucial for the LsrR binding. Furthermore, in agreement with the conclusion that phosphorylated AI-2 can relieve the repression of LsrR in previous studies, our data show that phospho- AI-2 renders LsrR unable to bind to its own promoter in vitro.展开更多
Quorum sensing(QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cell-cell...Quorum sensing(QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cell-cell signalling is likely to occur in an anaerobic rumen environment, which is a complex microbial ecosystem. In this study, using six ruminally fistulated Liuyang black goats as experimental animals, we aimed to detect the activity of quorum sensing autoinducers(AI) both in vivo and in vitro and to clone the lux S gene that encoded autoinducer-2(AI-2) synthase of microbial samples that were collected from the rumen of goats. Neutral detergent fiber(NDF) and soluble starch were the two types of substrates that were used for in vitro fermentation. The fermented fluid samples were collected at 0, 2, 4, 6, 8, 12, 24, 36, and 48 h of incubation. The acyl-homoserine lactones(AHLs) activity was determined using gas chromatography-mass spectrometer(GC-MS) analysis. However, none of the rumen fluid extracts that were collected from the goat rumen showed the same or similar fragmentation pattern to AHLs standards. Meanwhile, the AI-2 activity, assayed using a Vibrio harveyi BB170 bioassay, was negative in all samples that were collected from the goat rumen and from in vitro fermentation fluids. Our results indicated that the activities of AHLs and AI-2 were not detected in the ruminal contents from six goats and in ruminal fluids obtained from in vitro fermentation at different sampling time-points. However, the homologues of lux S in Prevotella ruminicola were cloned from in vivo and in vitro ruminal fluids. We concluded that AHLs and AI-2 could not be detected in in vivo and in vitro ruminal fluids of goats using the current detection techniques under current dietary conditions. However, the microbes that inhabited the goat rumen had the potential ability to secrete AI-2 signaling molecules and to communicate with each other via AI-2-mediated QS because of the presence of lux S.展开更多
单增李斯特菌(Listeria monocytogenes)AI-2类群体感应系统调控的生物被膜与毒力因子是导致其高致病率与高死亡率的主要原因。以测定报告菌哈维氏弧菌BB170的发光值作为筛选指标,对16株海洋源乳酸菌代谢产物中筛选L. m AI-2信号分子的...单增李斯特菌(Listeria monocytogenes)AI-2类群体感应系统调控的生物被膜与毒力因子是导致其高致病率与高死亡率的主要原因。以测定报告菌哈维氏弧菌BB170的发光值作为筛选指标,对16株海洋源乳酸菌代谢产物中筛选L. m AI-2信号分子的群体感应抑制剂(QSIs),并通过测检QSIs对L. m的MIC值、生长曲线、动力形成、生物被膜形成量,评价QSIs对L. m的控制效应。结果表明:从16株海洋源乳酸菌中筛选到6株乳酸菌的乙酸乙酯提取物对L. m AI-2信号分子活性有良好的抑制作用,占筛选菌株的37.5%,且抑制率均达75%以上,其中菌株Pediococcus pentosaceus zy-B-1乙酸乙酯提取物QSI-B-1抑制率最高(98.5%),并对L. m作用的MIC值为250μg/mL,随着QSI-B-1浓度的增加,对L. m菌落生长与动力形成的抑制作用逐渐加强,形成的生物被膜结构愈加疏松。本研究为利用从海洋环境中筛选乳酸菌源L. m QSIs提供依据。展开更多
基金We thank our colleagues J Zang and X Liu for their technical assistance in protein purification. This work was supported by the One Hundred Talent Project of the Chinese Academy of Sciences and the National Natural Science Foundation of China (50738006).
文摘In quorum sensing (QS) process, bacteria regulate gene expression by utilizing small signaling molecules called autoinducers in response to a variety of environmental cues. Autoinducer 2 (AI-2), a QS signaling molecule proposed to be involved in interspecies communication, is produced by many species of gram-negative and gram-positive bacteria. In Escherichia coil and Salmonella typhimurium, the extracellular AI-2 is imported into the cell by a transporter encoded by the lsr operon. Upstream of the lsr operon, there is a divergently transcribed gene encoding LsrR, which was reported previously to repress the transcription of the lsr operon and itself. Here, we have demonstrated for the first time that LsrR represses the transcription of the lsr operon and itself by directly binding to their promoters using gel shift and DNase I footprinting assays. The β-galactosidase reporter assays further suggest that two motifs in both the lsrR and lsrA promoter regions are crucial for the LsrR binding. Furthermore, in agreement with the conclusion that phosphorylated AI-2 can relieve the repression of LsrR in previous studies, our data show that phospho- AI-2 renders LsrR unable to bind to its own promoter in vitro.
基金financially support of the Chinese Academy of Sciences (KZCX2-YW-455)the CAS/SAFEA International Partnership Program for Creative Research Teams,China (KZCX2-YW-T07) and K C Wong Education, Hong Kong
文摘Quorum sensing(QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cell-cell signalling is likely to occur in an anaerobic rumen environment, which is a complex microbial ecosystem. In this study, using six ruminally fistulated Liuyang black goats as experimental animals, we aimed to detect the activity of quorum sensing autoinducers(AI) both in vivo and in vitro and to clone the lux S gene that encoded autoinducer-2(AI-2) synthase of microbial samples that were collected from the rumen of goats. Neutral detergent fiber(NDF) and soluble starch were the two types of substrates that were used for in vitro fermentation. The fermented fluid samples were collected at 0, 2, 4, 6, 8, 12, 24, 36, and 48 h of incubation. The acyl-homoserine lactones(AHLs) activity was determined using gas chromatography-mass spectrometer(GC-MS) analysis. However, none of the rumen fluid extracts that were collected from the goat rumen showed the same or similar fragmentation pattern to AHLs standards. Meanwhile, the AI-2 activity, assayed using a Vibrio harveyi BB170 bioassay, was negative in all samples that were collected from the goat rumen and from in vitro fermentation fluids. Our results indicated that the activities of AHLs and AI-2 were not detected in the ruminal contents from six goats and in ruminal fluids obtained from in vitro fermentation at different sampling time-points. However, the homologues of lux S in Prevotella ruminicola were cloned from in vivo and in vitro ruminal fluids. We concluded that AHLs and AI-2 could not be detected in in vivo and in vitro ruminal fluids of goats using the current detection techniques under current dietary conditions. However, the microbes that inhabited the goat rumen had the potential ability to secrete AI-2 signaling molecules and to communicate with each other via AI-2-mediated QS because of the presence of lux S.
文摘单增李斯特菌(Listeria monocytogenes)AI-2类群体感应系统调控的生物被膜与毒力因子是导致其高致病率与高死亡率的主要原因。以测定报告菌哈维氏弧菌BB170的发光值作为筛选指标,对16株海洋源乳酸菌代谢产物中筛选L. m AI-2信号分子的群体感应抑制剂(QSIs),并通过测检QSIs对L. m的MIC值、生长曲线、动力形成、生物被膜形成量,评价QSIs对L. m的控制效应。结果表明:从16株海洋源乳酸菌中筛选到6株乳酸菌的乙酸乙酯提取物对L. m AI-2信号分子活性有良好的抑制作用,占筛选菌株的37.5%,且抑制率均达75%以上,其中菌株Pediococcus pentosaceus zy-B-1乙酸乙酯提取物QSI-B-1抑制率最高(98.5%),并对L. m作用的MIC值为250μg/mL,随着QSI-B-1浓度的增加,对L. m菌落生长与动力形成的抑制作用逐渐加强,形成的生物被膜结构愈加疏松。本研究为利用从海洋环境中筛选乳酸菌源L. m QSIs提供依据。