In the quotient space theory of granular computing,the universe structure is assumed to be a topology,therefore,its application is still limited.In this study,based on the quotient space model,the universe structure i...In the quotient space theory of granular computing,the universe structure is assumed to be a topology,therefore,its application is still limited.In this study,based on the quotient space model,the universe structure is assumed as an algebra instead of a topology.As to obtain the algebraic quotient operator,the granulation must be uniquely determined by a congruence relation,and all the congruence relations form a complete semi-order lattice,which is the theoretical basis of granularities ' completeness.When the given equivalence relation is not a congruence relation,it defines the concepts of upper quotient and lower quotient,and discusses some of their properties which demonstrate that falsity preserving principle and truth preserving principle are still valid.Finally,it presents the algorithms and example of upper quotient and lower quotient.The work extends the quotient space theory from structure,and provides theoretical basis for the combination of the quotient space theory and the algebra theory.展开更多
In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone ...In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone type, an existence theorem for the Dirichlet boundary value problem is proved.展开更多
Assume X is a normed space,every x * ∈ S(X*) can reach its norm at some point in B(X),and Y is a β-normed space.If there is a quotient space of Y which is asymptotically isometric to l β,then L(X,Y) contain...Assume X is a normed space,every x * ∈ S(X*) can reach its norm at some point in B(X),and Y is a β-normed space.If there is a quotient space of Y which is asymptotically isometric to l β,then L(X,Y) contains an asymptotically isometric copy of l β.Some sufficient conditions are given under which L(X,Y) fails to have the fixed point property for nonexpansive mappings on closed bounded β-convex subsets of L(X,Y).展开更多
基金Supported by the National Natural Science Foundation of China(No.61173052)the Natural Science Foundation of Hunan Province(No.14JJ4007)
文摘In the quotient space theory of granular computing,the universe structure is assumed to be a topology,therefore,its application is still limited.In this study,based on the quotient space model,the universe structure is assumed as an algebra instead of a topology.As to obtain the algebraic quotient operator,the granulation must be uniquely determined by a congruence relation,and all the congruence relations form a complete semi-order lattice,which is the theoretical basis of granularities ' completeness.When the given equivalence relation is not a congruence relation,it defines the concepts of upper quotient and lower quotient,and discusses some of their properties which demonstrate that falsity preserving principle and truth preserving principle are still valid.Finally,it presents the algorithms and example of upper quotient and lower quotient.The work extends the quotient space theory from structure,and provides theoretical basis for the combination of the quotient space theory and the algebra theory.
文摘In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone type, an existence theorem for the Dirichlet boundary value problem is proved.
基金Supported by the Science and Technology Foundation of Educational Committee of Tianjin (Grant No 20060402)
文摘Assume X is a normed space,every x * ∈ S(X*) can reach its norm at some point in B(X),and Y is a β-normed space.If there is a quotient space of Y which is asymptotically isometric to l β,then L(X,Y) contains an asymptotically isometric copy of l β.Some sufficient conditions are given under which L(X,Y) fails to have the fixed point property for nonexpansive mappings on closed bounded β-convex subsets of L(X,Y).