A new concept of convergence (R-convergence) of a sequence of measures is applied to characterize global minimizers in a functional space as a sequence of approximate solutions in finite-dimensional spaces. A deviat...A new concept of convergence (R-convergence) of a sequence of measures is applied to characterize global minimizers in a functional space as a sequence of approximate solutions in finite-dimensional spaces. A deviation integral approach is used to find such solutions. For a constrained problem, a penalized deviation integral algorithm is proposed to convert it to unconstrained ones. A numerical example on an optimal control problem with non-convex state constraints is given to show the effectiveness of the algorithm.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11071158)Shanghai Leading Academic Discipline Project(No.S30104)
文摘A new concept of convergence (R-convergence) of a sequence of measures is applied to characterize global minimizers in a functional space as a sequence of approximate solutions in finite-dimensional spaces. A deviation integral approach is used to find such solutions. For a constrained problem, a penalized deviation integral algorithm is proposed to convert it to unconstrained ones. A numerical example on an optimal control problem with non-convex state constraints is given to show the effectiveness of the algorithm.