Summary: This study was designed to determine the effects of the recombinant adeno-associated virus vector containing sense CD151 gene (rAAV-CD151) and antisense CD151 gene (rAAV-antiCD151) on the migration of Tca8113...Summary: This study was designed to determine the effects of the recombinant adeno-associated virus vector containing sense CD151 gene (rAAV-CD151) and antisense CD151 gene (rAAV-antiCD151) on the migration of Tca8113 cell. Functional fragment of CD151 gene was amplified by RT-PCR, and inserted into the vector pAAV in the sense direction and antisense direction, respectively. The rAAV-CD151 and rAAV-antiCD151 were produced and the titers were determined by dot blot. The CD151, at protein level, was detected by Western blot. The Transwell chamber was used to detect the effects of the rAAV-CD151 and rAAV-antiCD151 on the tumor cell migration. The titers of the rAAV-CD151 and rAAV-antiCD151 were 2×10~11 pfu/ml and 1.0×10~11 pfu/ml, respectively. The expression of CD151 was increased by 108 % in the cells transfected with rAAV-CD151 and decreased by 79 % in the cells transfected with rAAV-antiCD151, as compared with non-transfected cells, respectively. The number of the migrating cells was significantly increased in the cells transfected with rAAV-CD151 (93.56±11.59) and decreased in the cells transfected with rAAV-antiCD151 (24.00±4.36) as compared with non-transfected and rAAV-GFP transfected cells (53.00±6.56 and 46.00±7.00, P<0.05). It is an important molecular mechanism of the tumor metastasis that the overexpression of CD151 promotes the migration of the tumor cells. The rAAV-antiCD151 is a novel tool, which can reduce the expression of CD151 and inhibit the migration of the tumor cells, and brings us a new approach of anti-sene gene therapy targeted at CD151 in human carcinoma.展开更多
The accessory olfactory bulb(AOB), located at the posterior dorsal aspect of the main olfactory bulb(MOB), is the first brain relay of the accessory olfactory system(AOS), which can parallelly detect and process volat...The accessory olfactory bulb(AOB), located at the posterior dorsal aspect of the main olfactory bulb(MOB), is the first brain relay of the accessory olfactory system(AOS), which can parallelly detect and process volatile and nonvolatile social chemosignals and mediate different sexual and social behaviors with the main olfactory system(MOS). However, due to its anatomical location and absence of specific markers, there is a lack of research on the internal and external neural circuits of the AOB. This issue was addressed by singlecolor labeling and fluorescent double labeling using retrograde rAAVs injected into the bed nucleus of the stria terminalis(BST), anterior cortical amygdalar area(ACo), medial amygdaloid nucleus(MeA), and posteromedial cortical amygdaloid area(PMCo) in mice. We demonstrated the effectiveness of this AOB projection neuron labeling method and showed that the mitral cells of the AOB exhibited efferent projection dispersion characteristics similar to those of the MOB. Moreover, there were significant differences in the number of neurons projected to different brain regions, which indicated that each mitral cell in the AOB could project to a different number of neurons in different cortices. These results provide a circuitry basis to help understand the mechanism by which pheromone information is encoded and decoded in the AOS.展开更多
文摘Summary: This study was designed to determine the effects of the recombinant adeno-associated virus vector containing sense CD151 gene (rAAV-CD151) and antisense CD151 gene (rAAV-antiCD151) on the migration of Tca8113 cell. Functional fragment of CD151 gene was amplified by RT-PCR, and inserted into the vector pAAV in the sense direction and antisense direction, respectively. The rAAV-CD151 and rAAV-antiCD151 were produced and the titers were determined by dot blot. The CD151, at protein level, was detected by Western blot. The Transwell chamber was used to detect the effects of the rAAV-CD151 and rAAV-antiCD151 on the tumor cell migration. The titers of the rAAV-CD151 and rAAV-antiCD151 were 2×10~11 pfu/ml and 1.0×10~11 pfu/ml, respectively. The expression of CD151 was increased by 108 % in the cells transfected with rAAV-CD151 and decreased by 79 % in the cells transfected with rAAV-antiCD151, as compared with non-transfected cells, respectively. The number of the migrating cells was significantly increased in the cells transfected with rAAV-CD151 (93.56±11.59) and decreased in the cells transfected with rAAV-antiCD151 (24.00±4.36) as compared with non-transfected and rAAV-GFP transfected cells (53.00±6.56 and 46.00±7.00, P<0.05). It is an important molecular mechanism of the tumor metastasis that the overexpression of CD151 promotes the migration of the tumor cells. The rAAV-antiCD151 is a novel tool, which can reduce the expression of CD151 and inhibit the migration of the tumor cells, and brings us a new approach of anti-sene gene therapy targeted at CD151 in human carcinoma.
基金supported by the National Natural Science Foundation of China(31400946,31771156,91632303/H09,91732304 and 31830035)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32030200)。
文摘The accessory olfactory bulb(AOB), located at the posterior dorsal aspect of the main olfactory bulb(MOB), is the first brain relay of the accessory olfactory system(AOS), which can parallelly detect and process volatile and nonvolatile social chemosignals and mediate different sexual and social behaviors with the main olfactory system(MOS). However, due to its anatomical location and absence of specific markers, there is a lack of research on the internal and external neural circuits of the AOB. This issue was addressed by singlecolor labeling and fluorescent double labeling using retrograde rAAVs injected into the bed nucleus of the stria terminalis(BST), anterior cortical amygdalar area(ACo), medial amygdaloid nucleus(MeA), and posteromedial cortical amygdaloid area(PMCo) in mice. We demonstrated the effectiveness of this AOB projection neuron labeling method and showed that the mitral cells of the AOB exhibited efferent projection dispersion characteristics similar to those of the MOB. Moreover, there were significant differences in the number of neurons projected to different brain regions, which indicated that each mitral cell in the AOB could project to a different number of neurons in different cortices. These results provide a circuitry basis to help understand the mechanism by which pheromone information is encoded and decoded in the AOS.