Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small...Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.展开更多
In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter e...In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to...In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.展开更多
Purpose–In this paper,a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks,respectively,for a quantitative evaluation of the condition of rai...Purpose–In this paper,a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks,respectively,for a quantitative evaluation of the condition of railway ballast bed.Design/methodology/approach–Based on original radar signals,the time–frequency characteristics of radar signals were analyzed,five ballast bed condition characteristic indexes were proposed,including the frequency domain integral area,scanning area,number of intersections with the time axis,number of timedomain inflection points and amplitude envelope obtained by Hilbert transform,and the effectiveness and sensitivity of the indexes were analyzed.Findings–The thickness of ballast bed tested at the sleep bottom by high-frequency radar is up to 55 cm,which meets the requirements of ballast bed detection.Compared with clean ballast bed,the values of the five indexes of fouled ballast bed are larger,and the five indexes could effectively show the condition of the ballast bed.The computational efficiency of amplitude envelope obtained by Hilbert transform is 140 s$km1,and the computational efficiency of other indexes is 5 s$km1.The amplitude envelopes obtained by Hilbert transform in the subgrade sections and tunnel sections are the most sensitive,followed by scanning area.The number of intersections with the time axis in the bridge sections was the most sensitive,followed by the scanning area.The scanning area can adapt to different substructures such as subgrade,bridges and tunnels,with high comprehensive sensitivity.Originality/value–The research can provide appropriate characteristic indexes from the high-frequency radar original signal to quantitatively evaluate ballast bed condition under different substructures.展开更多
This article presents an exhaustive comparative investigation into the accuracy of gender identification across diverse geographical regions,employing a deep learning classification algorithm for speech signal analysi...This article presents an exhaustive comparative investigation into the accuracy of gender identification across diverse geographical regions,employing a deep learning classification algorithm for speech signal analysis.In this study,speech samples are categorized for both training and testing purposes based on their geographical origin.Category 1 comprises speech samples from speakers outside of India,whereas Category 2 comprises live-recorded speech samples from Indian speakers.Testing speech samples are likewise classified into four distinct sets,taking into consideration both geographical origin and the language spoken by the speakers.Significantly,the results indicate a noticeable difference in gender identification accuracy among speakers from different geographical areas.Indian speakers,utilizing 52 Hindi and 26 English phonemes in their speech,demonstrate a notably higher gender identification accuracy of 85.75%compared to those speakers who predominantly use 26 English phonemes in their conversations when the system is trained using speech samples from Indian speakers.The gender identification accuracy of the proposed model reaches 83.20%when the system is trained using speech samples from speakers outside of India.In the analysis of speech signals,Mel Frequency Cepstral Coefficients(MFCCs)serve as relevant features for the speech data.The deep learning classification algorithm utilized in this research is based on a Bidirectional Long Short-Term Memory(BiLSTM)architecture within a Recurrent Neural Network(RNN)model.展开更多
This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down contin...This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM)signal and the downward LFM signal.Owing to the Doppler frequency shift from the sea surface,a range offset,which is proportional to the radial velocity of the sea surface,occurs between the upward and downward LFM signals.By using the least-squares linear fitting method in the transformed domain,the range offset can be measured and the current velocity can be retrieved.Finally,we verify the accuracy of current measurement with simulation results.展开更多
This paper covers the concept of Fourier series and its application for a periodic signal. A periodic signal is a signal that repeats its pattern over time at regular intervals. The idea inspiring is to approximate a ...This paper covers the concept of Fourier series and its application for a periodic signal. A periodic signal is a signal that repeats its pattern over time at regular intervals. The idea inspiring is to approximate a regular periodic signal, under Dirichlet conditions, via a linear superposition of trigonometric functions, thus Fourier polynomials are constructed. The Dirichlet conditions, are a set of mathematical conditions, providing a foundational framework for the validity of the Fourier series representation. By understanding and applying these conditions, we can accurately represent and process periodic signals, leading to advancements in various areas of signal processing. The resulting Fourier approximation allows complex periodic signals to be expressed as a sum of simpler sinusoidal functions, making it easier to analyze and manipulate such signals.展开更多
In radar system simulation,the reliability of simulation results depends not only on radar and target models,but also on radio frequency (RF) environment models,including clutter,multipath,diffraction,atmosphere refra...In radar system simulation,the reliability of simulation results depends not only on radar and target models,but also on radio frequency (RF) environment models,including clutter,multipath,diffraction,atmosphere refraction and attenuation.In traditional radar function simulation,all of these factors are grouped into a single pattern-propagation factor and can only give limited information for radar models.In signal-level simulation,radar models require simulated echoes should include information such as delay,doppler frequency,polarization,etc.By discussing and analyzing the principles and algorithms of RF environment effects (clutter,multipath,diffraction,atmosphere refraction and attenuation),this paper is supposed to provide a general RF environment model in signal-level.Algorithms for the Weibull clutter with Gaussian power spectral density (PSD) is discussed;A standard multipath and diffraction algorithm is analyzed,and the spherical earth and knife edge(SEKE)diffraction algorithm is introduced;The ray-tracing algorithm and the effective earth model are discussed;Algorithms for the absorption of oxygen and vapor are introduced;For certain algorithms,some practical advice is given.Finally,an object-oriented RF environment effects model is implemented,which has been dedicatedly designed for signal-level simulations and can provide relatively authentic simulated RF environment for the signal-level simulation of radar systems.Two simulation examples including clutter model and multipath and diffraction model are carried out and analyzed.展开更多
A television based multistatic radar system is described. The commercial television transmitter is used as the illuminator in the multistatic radar system. The reflected commercial television signals are measured by ...A television based multistatic radar system is described. The commercial television transmitter is used as the illuminator in the multistatic radar system. The reflected commercial television signals are measured by an array of sensors. A data processing scheme is developed that adapts to the poor signal processing ability. The innovation is focused on the construction of the observation space, which could reduce the non linearity error. The new method leads to better system stability than the traditional one. Monte Carlo simulation is utilized and compared with the traditional method.展开更多
To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least sq...To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) and the mathematical statistics methods were used. The method of computing single frequency signal's instantaneous frequency (IF) is unsuitable to the multi component signal. By using the method of the TLS ESPRIT combined with the mathematical statistics, the multi component signal's IF can be obtained. The computer simulation has shown that the method has the high accuracy for measuring the distance.展开更多
Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtai...Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.展开更多
Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wa...Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wave, analyses were made for the compensation algorithm and the expression of the inverse FFT base distance was given.The relative importance of different compensation terms was studied in great detail. The concept of searching compensation was put forward. Results and Condclusion Dcm-△Dvimis the be distance of inverse FFT transformation, the effect caused by the distance △Dim on one-dimension profile is negligible, and the effect caused by the distance Dvim should not be neglected and must be compensated.展开更多
Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitte...Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented. The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization pr...A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented. The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization precision and keep loop locking. A very high time synchronization precision is achieved. Using the modified 1PPS to discipline the local OCXO, the reference frequency signal achieves both high long term stability (LTS) and short term stability (STS) properties. An algorithm, named phase abrupt change CFAR is presented to restrain the 1PPS phase abrupt change and keep loop locking. The experimental results indicate that this time and frequency synchronization method is effective and the time synchronization precision of the synchronization system can be improved from ±100 ns to ±25 ns. In addition, the phase noise is improved to 20 dB.展开更多
As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the ...As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.展开更多
A novel algorithm is proposed to solve the poor per- formance problem of the Tent chaos-based frequency modulation (FM) signal for range-Doppler imaging, which takes it into complex multi-segment system by increasin...A novel algorithm is proposed to solve the poor per- formance problem of the Tent chaos-based frequency modulation (FM) signal for range-Doppler imaging, which takes it into complex multi-segment system by increasing its segments. The simulation results show that the effectiveness of the proposed algorithm, as well as the performance of the improved Tent FM signal is obvious in a multipath or noise propagation environment.展开更多
In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar...In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.展开更多
文摘Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.
基金Project supported by the National Natural Science Foundation of China(Grant No.61973037)。
文摘In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
基金supported by the National Natural Science Foundation of China(6193101562071335)+1 种基金the Technological Innovation Project of Hubei Province of China(2019AAA061)the Natural Science F oundation of Hubei Province of China(2021CFA002)。
文摘In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.
基金funded by the National Key R&Dprogram of China[Grant No.2022YFB2603302]the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd[Grant No.K2022G015]the Fund Project of China Academy of Railway Sciences Corporation Limited[Grant No.2022YJ305].
文摘Purpose–In this paper,a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks,respectively,for a quantitative evaluation of the condition of railway ballast bed.Design/methodology/approach–Based on original radar signals,the time–frequency characteristics of radar signals were analyzed,five ballast bed condition characteristic indexes were proposed,including the frequency domain integral area,scanning area,number of intersections with the time axis,number of timedomain inflection points and amplitude envelope obtained by Hilbert transform,and the effectiveness and sensitivity of the indexes were analyzed.Findings–The thickness of ballast bed tested at the sleep bottom by high-frequency radar is up to 55 cm,which meets the requirements of ballast bed detection.Compared with clean ballast bed,the values of the five indexes of fouled ballast bed are larger,and the five indexes could effectively show the condition of the ballast bed.The computational efficiency of amplitude envelope obtained by Hilbert transform is 140 s$km1,and the computational efficiency of other indexes is 5 s$km1.The amplitude envelopes obtained by Hilbert transform in the subgrade sections and tunnel sections are the most sensitive,followed by scanning area.The number of intersections with the time axis in the bridge sections was the most sensitive,followed by the scanning area.The scanning area can adapt to different substructures such as subgrade,bridges and tunnels,with high comprehensive sensitivity.Originality/value–The research can provide appropriate characteristic indexes from the high-frequency radar original signal to quantitatively evaluate ballast bed condition under different substructures.
文摘This article presents an exhaustive comparative investigation into the accuracy of gender identification across diverse geographical regions,employing a deep learning classification algorithm for speech signal analysis.In this study,speech samples are categorized for both training and testing purposes based on their geographical origin.Category 1 comprises speech samples from speakers outside of India,whereas Category 2 comprises live-recorded speech samples from Indian speakers.Testing speech samples are likewise classified into four distinct sets,taking into consideration both geographical origin and the language spoken by the speakers.Significantly,the results indicate a noticeable difference in gender identification accuracy among speakers from different geographical areas.Indian speakers,utilizing 52 Hindi and 26 English phonemes in their speech,demonstrate a notably higher gender identification accuracy of 85.75%compared to those speakers who predominantly use 26 English phonemes in their conversations when the system is trained using speech samples from Indian speakers.The gender identification accuracy of the proposed model reaches 83.20%when the system is trained using speech samples from speakers outside of India.In the analysis of speech signals,Mel Frequency Cepstral Coefficients(MFCCs)serve as relevant features for the speech data.The deep learning classification algorithm utilized in this research is based on a Bidirectional Long Short-Term Memory(BiLSTM)architecture within a Recurrent Neural Network(RNN)model.
基金The National Key Research and Development Program under contract No.2016YFC1401002the National Natural Science Foundation of China under contract Nos 41606201,41576173,41620104003 and 41706202.
文摘This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM)signal and the downward LFM signal.Owing to the Doppler frequency shift from the sea surface,a range offset,which is proportional to the radial velocity of the sea surface,occurs between the upward and downward LFM signals.By using the least-squares linear fitting method in the transformed domain,the range offset can be measured and the current velocity can be retrieved.Finally,we verify the accuracy of current measurement with simulation results.
文摘This paper covers the concept of Fourier series and its application for a periodic signal. A periodic signal is a signal that repeats its pattern over time at regular intervals. The idea inspiring is to approximate a regular periodic signal, under Dirichlet conditions, via a linear superposition of trigonometric functions, thus Fourier polynomials are constructed. The Dirichlet conditions, are a set of mathematical conditions, providing a foundational framework for the validity of the Fourier series representation. By understanding and applying these conditions, we can accurately represent and process periodic signals, leading to advancements in various areas of signal processing. The resulting Fourier approximation allows complex periodic signals to be expressed as a sum of simpler sinusoidal functions, making it easier to analyze and manipulate such signals.
文摘In radar system simulation,the reliability of simulation results depends not only on radar and target models,but also on radio frequency (RF) environment models,including clutter,multipath,diffraction,atmosphere refraction and attenuation.In traditional radar function simulation,all of these factors are grouped into a single pattern-propagation factor and can only give limited information for radar models.In signal-level simulation,radar models require simulated echoes should include information such as delay,doppler frequency,polarization,etc.By discussing and analyzing the principles and algorithms of RF environment effects (clutter,multipath,diffraction,atmosphere refraction and attenuation),this paper is supposed to provide a general RF environment model in signal-level.Algorithms for the Weibull clutter with Gaussian power spectral density (PSD) is discussed;A standard multipath and diffraction algorithm is analyzed,and the spherical earth and knife edge(SEKE)diffraction algorithm is introduced;The ray-tracing algorithm and the effective earth model are discussed;Algorithms for the absorption of oxygen and vapor are introduced;For certain algorithms,some practical advice is given.Finally,an object-oriented RF environment effects model is implemented,which has been dedicatedly designed for signal-level simulations and can provide relatively authentic simulated RF environment for the signal-level simulation of radar systems.Two simulation examples including clutter model and multipath and diffraction model are carried out and analyzed.
文摘A television based multistatic radar system is described. The commercial television transmitter is used as the illuminator in the multistatic radar system. The reflected commercial television signals are measured by an array of sensors. A data processing scheme is developed that adapts to the poor signal processing ability. The innovation is focused on the construction of the observation space, which could reduce the non linearity error. The new method leads to better system stability than the traditional one. Monte Carlo simulation is utilized and compared with the traditional method.
基金Doctoral Programme Foundation of Institution of Higher Education of China.
文摘To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) and the mathematical statistics methods were used. The method of computing single frequency signal's instantaneous frequency (IF) is unsuitable to the multi component signal. By using the method of the TLS ESPRIT combined with the mathematical statistics, the multi component signal's IF can be obtained. The computer simulation has shown that the method has the high accuracy for measuring the distance.
文摘Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.
文摘Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wave, analyses were made for the compensation algorithm and the expression of the inverse FFT base distance was given.The relative importance of different compensation terms was studied in great detail. The concept of searching compensation was put forward. Results and Condclusion Dcm-△Dvimis the be distance of inverse FFT transformation, the effect caused by the distance △Dim on one-dimension profile is negligible, and the effect caused by the distance Dvim should not be neglected and must be compensated.
基金TheNationalDefenceFoundation (No .NEWL5 14 35QT2 2 0 4 0 1) ,theDoctoralInnovationFoundationofSWJTU ,andtheMainTeacherSponsorProgramoftheMinistryofEducationofChina (No .6 5 ,2 0 0 0 )
文摘Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金the National Ministry Innovation Foundation (7130302)
文摘A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented. The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization precision and keep loop locking. A very high time synchronization precision is achieved. Using the modified 1PPS to discipline the local OCXO, the reference frequency signal achieves both high long term stability (LTS) and short term stability (STS) properties. An algorithm, named phase abrupt change CFAR is presented to restrain the 1PPS phase abrupt change and keep loop locking. The experimental results indicate that this time and frequency synchronization method is effective and the time synchronization precision of the synchronization system can be improved from ±100 ns to ±25 ns. In addition, the phase noise is improved to 20 dB.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793the Natural Science Foundation of Jiangsu Province of China under contract No.BK2012199
文摘As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.
基金supported by the National Natural Science Foundation of China (610320106110117211076006)
文摘A novel algorithm is proposed to solve the poor per- formance problem of the Tent chaos-based frequency modulation (FM) signal for range-Doppler imaging, which takes it into complex multi-segment system by increasing its segments. The simulation results show that the effectiveness of the proposed algorithm, as well as the performance of the improved Tent FM signal is obvious in a multipath or noise propagation environment.
文摘In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.