期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Radar automatic target recognition based on feature extraction for complex HRRP 被引量:9
1
作者 DU Lan LIU HongWei BAO Zheng ZHANG JunYing 《Science in China(Series F)》 2008年第8期1138-1153,共16页
Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to... Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in this paper, only the amplitude information in the complex HRRP, called the real HRRP in this paper, is used for RATR, whereas the phase information is discarded. However, the remaining phase information except for initial phases in the complex HRRP also contains valuable target discriminant information. This paper proposes a novel feature extraction method for the complex HRRP. The extracted complex feature vector, referred to as the complex feature vector with difference phases, contains the difference phase information between range cells but no initial phase information in the complex HRRR According to the scattering center model, the physical mechanism of the proposed complex feature vector is similar to that of the real HRRP, except for reserving some phase information independent of the initial phase in the complex HRRP. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Moreover, the components in the complex feature vector with difference phases approximate to follow Gaussian distribution, which make it simple to perform the statistical recognition by such complex feature vector. The recognition experiments based on measured data show that the proposed complex feature vector can obtain better recognition performance than the real HRRP if only the cell interval parameters are properly selected. 展开更多
关键词 complex high-resolution range profile (HRRP) radar automatic target recognition (RATR) feature extraction minimum Euclidean distance classifier adaptive Gaussian classifier (AGC)
原文传递
A new feature extraction method using the amplitude fluctuation property of target HRRP for radar automatic target recognition
2
作者 DU Lan LIU Hong-wei +1 位作者 BAO Zheng ZHANG Jun-ying 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2006年第2期171-176,共6页
Due to the aspect sensitivity of high-resolution range profile(HRRP),traditional radar HRRP target recognition methods usually use average profile within some target-aspect region as the target-aspect template.Actuall... Due to the aspect sensitivity of high-resolution range profile(HRRP),traditional radar HRRP target recognition methods usually use average profile within some target-aspect region as the target-aspect template.Actually,the amplitude fluctuation property of target HRRP also represents some feature information of the target.Based on the scattering center model,a new feature extraction method using the amplitude fluctuation property of target HRRP is proposed in this paper.The weighted HRRP feature extracted by the new method can represent the scatterer distribution in every range cell,thereby it can describe the scattering property of the target better.The experimental results based on measured data show that the new feature extraction method can greatly improve recognition performances. 展开更多
关键词 radar automatic target recognition(RATR) HRRP Feature extraction Scattering center model Average profile Variance profile
原文传递
New statistical model for radar HRRP target recognition 被引量:2
3
作者 Qingyu Hou Feng Chen Hongwei Liu Zheng Bao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期204-210,共7页
The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper devel... The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model. This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are indepen- dent. During computing the parameters of the model, birth-death moves are utilized to determine the optimal number of model au- tomatically. Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method. 展开更多
关键词 radar automatic target recognition (RATR) high reso- lution range profile (HRRP) variational Bayesian mixtures of factor analyzers (VBMFA) variational Bayesian(VB) mixtures of factor analyzers (MFA).
下载PDF
A WEIGHTED FEATURE REDUCTION METHOD FOR POWER SPECTRA OF RADAR HRRPS 被引量:1
4
作者 Du Lan Liu Hongwei Bao Zheng Zhang Junying 《Journal of Electronics(China)》 2006年第3期365-369,共5页
Feature reduction is a key process in pattern recognition. This paper deals with the feature reduction methods for a time-shift invariant feature, power spectrum, in Radar Automatic Target Recognition (RATR) using Hig... Feature reduction is a key process in pattern recognition. This paper deals with the feature reduction methods for a time-shift invariant feature, power spectrum, in Radar Automatic Target Recognition (RATR) using High-Resolution Range Profiles (HRRPs). Several existing feature reduction methods in pattern recognition are analyzed, and a weighted feature reduction method based on Fisher's Discriminant Ratio (FDR) is proposed in this paper. According to the characteristics of radar HRRP target recognition, this proposed method searches the optimal weight vector for power spectra of HRRPs by means of an iterative algorithm, and thus reduces feature dimensionality. Compared with the method of using raw power spectra and some existing feature reduction methods, the weighted feature reduction method can not only reduce feature dimensionality, but also improve recognition performance with low computation complexity. In the recognition experiments based on measured data, the proposed method is robust to different test data and achieves good recognition results. 展开更多
关键词 radar automatic target recognition (RATR) High-Resolution Range Profile (HRRP) Power spectrum Feature reduction Fisher's Discriminant Ratio (FDR)
下载PDF
THE INFLUENCE OF SPECKLE ON HIGH RESOLUTION RANGE PROFILE RECOGNITION BASED ON THE MATCHING SCORE
5
作者 Zhang Rui Wei Xizhang Li Xiang 《Journal of Electronics(China)》 2012年第3期222-228,共7页
Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP with... Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP without scatterer Moving Through Range Cell (MTRC). However, template database based on this assumption is always challenged by measured data. One reason is that speckle happens in the frame without scatterer MTRC. Speckle makes HRRP fluctuate sharply and not match well with the average HRRP. We precisely introduce the formation mechanism of speckle. Then, we make an insight into the principle of matching score. Based on the conclusion, we study the properties of matching score between speckled HRRP and the average HRRP. The theoretical analysis and Monte Carlo experimental results demonstrate that speckle makes HRRP not to match well with the average HRRP according to the energy ratio of speckled scatterers. On the assumption of ideal scattering centre model, speckled HRRP has a matching score less than 85% with the average HRRP if speckled scatterers occupy more than 50% energy of the target. 展开更多
关键词 radar automatic target recognition High Resolution Range Profile (HRRP) Aspect sensitivity Matching score SPECKLE
下载PDF
Feature Extraction of Radar Range Profiles Based on Normalized Central Moments
6
作者 傅雄军 高梅国 《Journal of Beijing Institute of Technology》 EI CAS 2004年第S1期17-20,共4页
The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as ... The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition. 展开更多
关键词 radar range profile: automatic target recognition: normalized central moment: clustering analysis: nearest neighbor classifier
下载PDF
Radar HRRP statistical recognition with temporal factor analysis by automatic Bayesian Ying-Yang harmony learning 被引量:2
7
作者 Penghui WANG Lei SHI +3 位作者 Lan DU Hongwei LIU Lei XU Zheng BAO 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期300-317,共18页
Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposi... Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposing that HRRP samples are independent and jointly Gaussian distributed,a recent work[Du L,Liu H W,Bao Z.IEEE Transactions on Signal Processing,2008,56(5):1931–1944]applied factor analysis(FA)to model HRRP data with a two-phase approach for model selection,which achieved satisfactory recognition performance.The theoretical analysis and experimental results reveal that there exists high temporal correlation among adjacent HRRPs.This paper is thus motivated to model the spatial and temporal structure of HRRP data simultaneously by employing temporal factor analysis(TFA)model.For a limited size of high-dimensional HRRP data,the two-phase approach for parameter learning and model selection suffers from intensive computation burden and deteriorated evaluation.To tackle these problems,this work adopts the Bayesian Ying-Yang(BYY)harmony learning that has automatic model selection ability during parameter learning.Experimental results show stepwise improved recognition and rejection performances from the twophase learning based FA,to the two-phase learning based TFA and to the BYY harmony learning based TFA with automatic model selection.In addition,adding many extra free parameters to the classic FA model and thus becoming even worse in identifiability,the model of a general linear dynamical system is even inferior to the classic FA model. 展开更多
关键词 radar automatic target recognition(RATR) high-resolution range profile(HRRP) temporal factor analysis(TFA) Bayesian Ying-Yang(BYY)harmony learning automatic model selection
原文传递
Analysis about the speckle of radar high resolution range profile 被引量:5
8
作者 ZHANG Rui WEI XiZhang +1 位作者 LI Xiang LIU Zhen 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第1期226-236,共11页
The aspect sensitivity is the main problem in radar automatic target recognition using high resolution range profile (HRRP). In the traditional viewpoint,HRRPs are assumed to be highly similar if the aspect variation ... The aspect sensitivity is the main problem in radar automatic target recognition using high resolution range profile (HRRP). In the traditional viewpoint,HRRPs are assumed to be highly similar if the aspect variation is not enough to cause range migration. However,some experiments in anechoic chambers don’t agree with the assumption. Particularly,some abnormal HRRPs often occur in the measured data. Based on the scattering center model,this paper focuses on the reason of abnormal HRRP,which is named as the speckle. The theoretical model of speckle is established and the "spurious dual peaks" feature of the speckled HRRP is analyzed. Then the occurrence condition of speckle is concluded,and so is the relationship between the speckle probability in HRRP and radar carrier frequency. At last,the experiment in an anechoic chamber is used to verify all the analyses about the speckle. 展开更多
关键词 radar automatic target recognition high resolution range prof'de aspect sensitivity SPECKLE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部