Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributio...Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.展开更多
Target recognition performance can be affected by radar waveform parameters.In this paper,we established rigorous relationship between target recognition efficiency and the parameters of a repeatedly transmitted wavef...Target recognition performance can be affected by radar waveform parameters.In this paper,we established rigorous relationship between target recognition efficiency and the parameters of a repeatedly transmitted waveform.It is based on Kullback-Leibler Information Number of single observation(KLINs),which measures the dissimilarity between targets depicted by a range-velocity double spread density function in frequency domain.We considered two signal models which are different in the coherence of the observations.The method we proposed takes advantage of the methodology of sequential hypothesis test,and then the recognition performance in terms of correct classification rate is expressed by Receiver Operating Characteristic(ROC).Simulation results about the parameters of LFM signal show the validity of the method.展开更多
Aiming at the signal bandwidth design problem for multi-target imaging task,a kind of multiple input multiple output(MIMO)radar waveform design method is proposed.At first,the closed-loop feedback between the range pr...Aiming at the signal bandwidth design problem for multi-target imaging task,a kind of multiple input multiple output(MIMO)radar waveform design method is proposed.At first,the closed-loop feedback between the range profile and the signal bandwidth,which can design the minimum bandwidth of a transmitting signal that can distinguish each scatterer of the target in range direction,is established.Then,considering the request of beam pattern and the bandwidth limitation,a waveform optimization model is established and solved.Therefore,the multi-target observation and the dynamic adjustment of the signal bandwidth are accomplished.In the end,the simulation results prove the performance of the algorithm in a low SNR circumstance.展开更多
The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolut...The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.展开更多
An effective numerical approach is developed for orthogonal waveform design for Multiple-Input Multiple-Output (MIMO) radar. The Doppler shift tolerance is considered in the design cost function. The design results in...An effective numerical approach is developed for orthogonal waveform design for Multiple-Input Multiple-Output (MIMO) radar. The Doppler shift tolerance is considered in the design cost function. The design results indicate that the Doppler? tolerance of the designed orthogonal waveforms is markedly improved.展开更多
In high frequency surface wave radar (HFSWR) applications, range and azimuth resolutions are usually lim-ited by the bandwidth of waveforms and the physical dimension of the radar aperture, respectively. In this paper...In high frequency surface wave radar (HFSWR) applications, range and azimuth resolutions are usually lim-ited by the bandwidth of waveforms and the physical dimension of the radar aperture, respectively. In this paper, we propose a concept of multiple-input multiple-output (MIMO) HFSWR system with widely sepa-rated antennas transmitting and receiving sparse frequency waveforms. The proposed system can overcome the conventional limitation on resolutions and obtain high resolution capability through this new configura-tion. Ambiguity function (AF) is derived in detail to evaluate the basic resolution performance of this pro-posed system. The advantages of the system of fine resolution and low peak sidelobe level (PSL) are demon-strated by the AF analysis through numerical simulations. The impacts of Doppler effect and the geometry configuration are also studied.展开更多
For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform d...For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.展开更多
Radars and their applications were, for a long time, reserved to national defense, air security or weather service domains. For a few years, with the emergence of new technologies, radar applications have been develop...Radars and their applications were, for a long time, reserved to national defense, air security or weather service domains. For a few years, with the emergence of new technologies, radar applications have been developed and have become known in the civil domain. In particular, the arrival of UWB—Ultra-Wideband technology allows the design of compact and low-cost radars with multiple fields of application. In this paper, we focus on road applications, such as driving assistance with the objective of increasing safety and reducing accidents. In classical UWB radar systems, Gaussian and monocycle pulses are commonly used. In previous works, original waveforms based on orthogonal functions (Hermite and Gegenbauer) were proposed. These provide a good spatial resolution, suitable for radar detection. Another advantage of these waveforms is their multiple access capability, due to their orthogonality. The aim of the study presented in this article is to compare simulation and experimental results obtained, especially for short-range anticollision radar application, using these waveforms in one part and Gaussian and monocycle pulses in the other part. The originality of this paper relies on the new approach. Indeed, this comparison study using these waveforms has never been done before. Finally, some examples of real experiments in a real road environment with different waveforms are presented and analysed.展开更多
Cognitive radar is a new framework of radar system proposed by Simon Haykin recently. Adaptive waveform selection is an important problem of intelligent transmitter in cognitive radar. In this paper, the problem of ad...Cognitive radar is a new framework of radar system proposed by Simon Haykin recently. Adaptive waveform selection is an important problem of intelligent transmitter in cognitive radar. In this paper, the problem of adaptive waveform selection is modeled as stochastic dynamic programming model. Then Q-learning is used to solve it. Q-learning can solve the problems that we do not know the explicit knowledge of state-transition probabilities. The simulation results demonstrate that this method approaches the optimal wave-form selection scheme and has lower uncertainty of state estimation compared to fixed waveform. Finally, the whole paper is summarized.展开更多
基金This work was supported by the National Natural Science Foundation of China(91538201)the Taishan Scholar Project of Shandong Province(ts201511020)the project supported by Chinese National Key Laboratory of Science and Technology on Information System Security(6142111190404).
文摘Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.
文摘Target recognition performance can be affected by radar waveform parameters.In this paper,we established rigorous relationship between target recognition efficiency and the parameters of a repeatedly transmitted waveform.It is based on Kullback-Leibler Information Number of single observation(KLINs),which measures the dissimilarity between targets depicted by a range-velocity double spread density function in frequency domain.We considered two signal models which are different in the coherence of the observations.The method we proposed takes advantage of the methodology of sequential hypothesis test,and then the recognition performance in terms of correct classification rate is expressed by Receiver Operating Characteristic(ROC).Simulation results about the parameters of LFM signal show the validity of the method.
基金Supported by the National Natural Science Foundation of China(61631019)
文摘Aiming at the signal bandwidth design problem for multi-target imaging task,a kind of multiple input multiple output(MIMO)radar waveform design method is proposed.At first,the closed-loop feedback between the range profile and the signal bandwidth,which can design the minimum bandwidth of a transmitting signal that can distinguish each scatterer of the target in range direction,is established.Then,considering the request of beam pattern and the bandwidth limitation,a waveform optimization model is established and solved.Therefore,the multi-target observation and the dynamic adjustment of the signal bandwidth are accomplished.In the end,the simulation results prove the performance of the algorithm in a low SNR circumstance.
文摘The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.
文摘An effective numerical approach is developed for orthogonal waveform design for Multiple-Input Multiple-Output (MIMO) radar. The Doppler shift tolerance is considered in the design cost function. The design results indicate that the Doppler? tolerance of the designed orthogonal waveforms is markedly improved.
文摘In high frequency surface wave radar (HFSWR) applications, range and azimuth resolutions are usually lim-ited by the bandwidth of waveforms and the physical dimension of the radar aperture, respectively. In this paper, we propose a concept of multiple-input multiple-output (MIMO) HFSWR system with widely sepa-rated antennas transmitting and receiving sparse frequency waveforms. The proposed system can overcome the conventional limitation on resolutions and obtain high resolution capability through this new configura-tion. Ambiguity function (AF) is derived in detail to evaluate the basic resolution performance of this pro-posed system. The advantages of the system of fine resolution and low peak sidelobe level (PSL) are demon-strated by the AF analysis through numerical simulations. The impacts of Doppler effect and the geometry configuration are also studied.
基金supported by the National Natural Science Foundation of China(6107114561271331)
文摘For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.
文摘Radars and their applications were, for a long time, reserved to national defense, air security or weather service domains. For a few years, with the emergence of new technologies, radar applications have been developed and have become known in the civil domain. In particular, the arrival of UWB—Ultra-Wideband technology allows the design of compact and low-cost radars with multiple fields of application. In this paper, we focus on road applications, such as driving assistance with the objective of increasing safety and reducing accidents. In classical UWB radar systems, Gaussian and monocycle pulses are commonly used. In previous works, original waveforms based on orthogonal functions (Hermite and Gegenbauer) were proposed. These provide a good spatial resolution, suitable for radar detection. Another advantage of these waveforms is their multiple access capability, due to their orthogonality. The aim of the study presented in this article is to compare simulation and experimental results obtained, especially for short-range anticollision radar application, using these waveforms in one part and Gaussian and monocycle pulses in the other part. The originality of this paper relies on the new approach. Indeed, this comparison study using these waveforms has never been done before. Finally, some examples of real experiments in a real road environment with different waveforms are presented and analysed.
文摘Cognitive radar is a new framework of radar system proposed by Simon Haykin recently. Adaptive waveform selection is an important problem of intelligent transmitter in cognitive radar. In this paper, the problem of adaptive waveform selection is modeled as stochastic dynamic programming model. Then Q-learning is used to solve it. Q-learning can solve the problems that we do not know the explicit knowledge of state-transition probabilities. The simulation results demonstrate that this method approaches the optimal wave-form selection scheme and has lower uncertainty of state estimation compared to fixed waveform. Finally, the whole paper is summarized.