期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
New Method for Monitoring Tire Pressure of Cars Based on the Tire Radial Deformation 被引量:7
1
作者 HAN Zongqi WANG Liqiang +1 位作者 LIU Quanyou JU Xuekun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期180-184,共5页
Monitoring tire pressure of cars and signaling abnormal conditions is an important means to prevent deadly accidents. Large achievements have been gained, especially in direct tire pressure monitoring system(TPMS). ... Monitoring tire pressure of cars and signaling abnormal conditions is an important means to prevent deadly accidents. Large achievements have been gained, especially in direct tire pressure monitoring system(TPMS). But there has been rarely research on indirect TPMS in the world. In China, the research on indirect TPMS is almost lacking. The international research on the indirect monitoring tire pressure method is mainly based on measuring and comparing the rotating speed of wheels. But it is very difficult to measure wheel rotating speed accurately because of the influence of many random factors. In this paper, the authors propose a new method in which the tire pressure can be monitored indirectly. This method can be used for tire calibration, wheel speed frequency standardization, wheel speed frequency comparison, and abnormal tire pressure determination. The pulse frequencies from wheel speed sensors of ABS are used to indicate tire deformation. Because the frequency has a relationship with tire deformation, the tire deformation reflects the tire pressure. Small sample statistics is used in the new method to increase the accuracy, and the experimental samples using the principle of the new method have been made and tested. The result of vehicle tests on road demonstrates that the method is efficient and accurate to monitor tire pressure. The research has positive potential for developing products. 展开更多
关键词 tire pressure monitoring system tire radial deformation pulse frequency ALARMS
下载PDF
THE REMARKABLE NATURE OF RADIALLY SYMMETRIC DEFORMATION OF ANISOTROPIC PIEZOELECTRIC INCLUSION
2
作者 Yang Gao Minzhong Wang Baosheng Zhao 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第3期278-282,共5页
The present paper deals with spherically symmetric deformation of an inclusion- matrix problem, which consists of an infinite isotropic matrix and a spherically uniform anisotropic piezoelectric inclusion. The interfa... The present paper deals with spherically symmetric deformation of an inclusion- matrix problem, which consists of an infinite isotropic matrix and a spherically uniform anisotropic piezoelectric inclusion. The interface between the two phases is supposed to be perfect and the system is subjected to uniform loadings at infinity. Exact solutions are obtained for solid spherical piezoelectric inclusion and isotropic matrix. When the system is subjected to a remote traction, analytical results show that remarkable nature exists in the spherical inclusion. It is demonstrated that an infinite stress appears at the center of the inclusion. Furthermore, a cavitation may occur at the center of the inclusion when the system is subjected to uniform tension, while a black hole may be formed at the center of the inclusion when the applied traction is uniform pressure. The appearance of different remarkable nature depends only on one non-dimensional material parameter and the type of the remote traction, while is independent of the magnitude of the traction. 展开更多
关键词 piezoelectric inclusion ANISOTROPIC radially symmetric deformation remarkable nature cavitation black holes
下载PDF
Electromechanical coupling effect on electronic properties of double-walled boron nitride nanotubes
3
作者 Zhu-Hua Zhang Wan-Lin Guo Boris I. Yakobson 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第6期1532-1538,共7页
We report on a first-principles study of a novel band modulation in zigzag double-walled boron nitride nan- otubes (DBNNTs) by applying radial strain and coupled ex- ternal electric field. We show that the band alig... We report on a first-principles study of a novel band modulation in zigzag double-walled boron nitride nan- otubes (DBNNTs) by applying radial strain and coupled ex- ternal electric field. We show that the band alignment be- tween the inner and outer walls of the DBNNTs can be tuned from type I to type II with increasing radial strain, accompa- nied with a direct to indirect band gap transition and a sub- stantial gap reduction. The band gap can be further signifi- cantly reduced by applying a transverse electric field. The coupling of electric field with the radial strain makes the field-induced gap reduction being anisotropic and more re- markable than that in undeformed DBNNTs. In particular, the gap variation induced by electric field perpendicular to the radial strain is the most remarkable among all the modu-lations. These tunable properties by electromechanical cou- pling in DBNNTs will greatly enrich their versatile applica- tions in future nanoelectronics. 展开更多
关键词 Boron nitrides nanotubes radial deformation Electric field Band gap
下载PDF
Extremum selection method of random variable for nonlinear dynamic reliability analysis of turbine blade deformation 被引量:3
4
作者 Chengwei Fein Guangchen Bai 《Propulsion and Power Research》 SCIE 2012年第1期58-63,共6页
To effectively select random variable in nonlinear dynamic reliability analysis,the extremum selection method(ESM)is proposed.Firstly,the basic idea was introduced and the mathematical model was established for the ES... To effectively select random variable in nonlinear dynamic reliability analysis,the extremum selection method(ESM)is proposed.Firstly,the basic idea was introduced and the mathematical model was established for the ESM.The nonlinear dynamic reliability analysis of turbine blade radial deformation was taken as an example to verify the ESM.The results show that the analysis precision of the ESM is 99.972%,which is almost kept consistent with that of the Monte Carlo method;moreover,the computing time of the ESM is shorter than that of the traditional method.Hence,it is demonstrated that the ESM is able to save calculation time and improve the computational efficiency while keeping the calculation precision for nonlinear dynamic reliability analysis.The present study provides a method to enhance the nonlinear dynamic reliability analysis in selecting the random variables and offers a way to design structure and machine in future work. 展开更多
关键词 Extremum selection method(ESM) Turbine blade radial deformation Reliability analysis Random variable NONLINEAR DYNAMIC
原文传递
RBFs-MSA Hybrid Method for Mesh Deformation 被引量:9
5
作者 LIU Yu GUO Zheng LIU Jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第4期500-507,共8页
Simulating unsteady flow phenomena involving moving boundaries is a challenging task,one key requirement of which is a reliable and fast algorithm to deform the computational mesh.Radial basis functions(RBFs) interp... Simulating unsteady flow phenomena involving moving boundaries is a challenging task,one key requirement of which is a reliable and fast algorithm to deform the computational mesh.Radial basis functions(RBFs) interpolation is a very simple and robust method to deform the mesh.However,the number of operations and the requirement of memory storage will be increased rapidly as the number of grid nodes increases,which limits the application of RBFs to three-dimensional(3D) moving mesh.Moving submesh approach(MSA) is an efficient method,but its robustness depends on the method used to deform the background mesh.A hybrid method which combines the benefits of MSA and RBFs interpolation,which is called RBFs-MSA,has been presented.This hybrid method is proved to be robust and efficient via several numerical examples.From the aspect of the quality of deforming meshes,this hybrid method is comparable with the RBFs interpolation;from the aspect of computing efficiency,one test case shows that RBFs-MSA is about two orders of magnitude faster than RBFs interpolation.For these benefits of RBFs-MSA,the new method is suitable for unsteady flow simulation which refers to boundaries movement. 展开更多
关键词 moving mesh mesh deforming radial basis functions interpolation moving submesh approach CFD
原文传递
Numerical studies of static aeroelastic effects on grid fin aerodynamic performances 被引量:4
6
作者 Chengde HUANG Wen LIU Guowei YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1300-1314,共15页
The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects.In this paper, the static a... The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects.In this paper, the static aeroelastic simulations are performed by the coupled viscous computational fluid dynamics with structural flexibility method in transonic and supersonic regimes. The developed coupling strategy including fluid–structure interpolation and volume mesh motion schemes is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin mounted on a body. Horizontal fin results show that the deformed fin is swept backward and the axial force is increased. The deformations also induce the movement of center of pressure, causing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow,respectively. For the vertical fin, the local effective incidences are increased due to the deformations so that the deformed normal force is greater than the original one. At high angles of attack, both the deformed and original normal forces experience a sudden reduction due to the interference of leeward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate strongly with the increment in the square of normal force. 展开更多
关键词 Aeroelasticity Fluid-structure interpolation Grid fin Mesh deformation radial basis function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部