期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
总压畸变对涵道推力风扇气动性能影响的研究 被引量:1
1
作者 王可鑫 赵磊 +2 位作者 高丽敏 张栋 俞一波 《风机技术》 2022年第5期8-20,共13页
Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of in... Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of inhalation of the body Boundary Layer, the ducted thrust fan of the Boundary Layer Ingestion (BLI) propulsion system inevitably works in the intake distortion condition. In this paper, the ducted thrust fan in a BLI propulsion system is taken as the research object. The influence of radial and circumferential total pressure distortion on the inlet section of the ducted thrust fan caused by boundary layer suction and inlet shape is studied by steady single channel and fullloop numerical simulation. The influence law of distortion intensity and distortion range of the two types of distortion patterns of the distortion map is analyzed emphatically. The results show that :(1) the greater the range and intensity of the radial total pressure distortion are, the more affected the performance of the ducted thrust fan is;(2) The aero-dynamic performance decline amplitude of the ducted thrust fan increases with the increase of the intensity of the circumferential total pressure distortion;The transmission law of the circumferential total pressure distortion intensity along the inlet and outlet of the fan is almost the same. Different working conditions have influence on the attenuation degree of the circumferential total pressure distortion in the ducted thrust fan, and the attenuation range of the circumferential total pressure distortion in the design working condition is the largest. 展开更多
关键词 Ducted Thrust Fan radial Total Pressure distortion Circumferential Total Pressure distortion Aerodynamic Performance
下载PDF
Experimental investigation of tandem rotor under clean and radially distorted inflows
2
作者 Amit Kumar A.M.Pradeep 《Propulsion and Power Research》 SCIE 2021年第3期247-261,共15页
With increasing emphasis on renewable sources of energy,the gas turbine engine faces several challenges in evolving its design,to remain relevant.Compressor is one of the main components,which accounts for one-third o... With increasing emphasis on renewable sources of energy,the gas turbine engine faces several challenges in evolving its design,to remain relevant.Compressor is one of the main components,which accounts for one-third of the engine length.Compressor designers have been exploring different ideas to achieve maximum pressure rise with minimum number of stages required.Tandem blading is one such novel design that has demonstrated higher diffusion capability than a single rotor blade.A single blade,with a higher diffusion factor,carries the risk of flow separation against the adverse pressure gradient of the compressor flow.In the tandem blading concept,a single blade is split into forward and aft blade.The gap that is created between the forward and aft blade,serves as a mechanism to energize the sluggish flow over the aft blade suction surface,which in turn helps in mitigating the flow separation.The present experimental work is aimed at exploring the feasibility of a tandem rotor in an axial flow compressor under the clean and radially distorted inflows.Steady and unsteady experimental results of the tandem rotor are included in this paper.The stage performance characteristics,variation of total pressure,flow coefficient,and exit flow angle along the blade span for clean and distorted flow is included in this paper.Some results of a steady Reynolds-averaged Navier-Stokes simulation are also included to give some insight into the complex flow field of the tandem rotor.Wavelet transform,fast Fourier transform analysis,and visual inspection of casing pressure traces are used to analyze the unsteady result of the tandem rotor in clean and distorted flow.The tandem rotor is able to achieve its design pressure ratio and has a stall margin of 9%under the clean flow condition.Initially,stall appears as a low-intensity spike for all the cases,which turns into a long length-scale disturbance within three rotor revolutions.A modal wave of low frequency is also observed under clean and distorted inflows. 展开更多
关键词 Tandem rotor Axial overlap and percentage pitch radially distorted inflows Diffusion factor STALL Aerodynamics of compressor blade
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部