The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of th...The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation(CF) source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional(3D) simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge(LE) in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.展开更多
Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery.Several different flow control mechanisms and qualitative design strategies have been proposed.The endwal...Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery.Several different flow control mechanisms and qualitative design strategies have been proposed.The endwall contouring mechanism based on the flow governing equations is significant for exploring the quantitative design strategies of the nonaxisymmetric endwall contouring.In this paper,the static pressure redistribution mechanism of endwall contouring was explained based on the radial equilibrium equation.A quantified expression of the static pressure redistribution mechanism was proposed.Compressor cascades were simulated using an experimentally validated numerical method to validate the static pressure redistribution mechanism.A geometric parameter named meridional curvature(Cme)is defined to quantify the concave and convex features of the endwall.Results indicate that the contoured endwall changes the streamline curvature,inducing a centrifugal acceleration.Consequently,the radial pressure gradient is reformed to maintain the radial equilibrium.The convex endwall represented by positive Cme increases the radial pressure gradient,decreasing the endwall static pressure,while the concave endwall represented by negative Cme increases the endwall static pressure.The Cme helps to establish the quantified relation between the change in the endwall radial pressure gradient and the endwall geometry.Besides,there is a great correlation between the distributions of the Cme and the change in the endwall static pressure.It can be concluded that the parameter Cme can be considered as a significant parameter to parameterize the endwall surface and to explore the quantitative design strategies of the nonaxisymmetric endwall contouring.展开更多
A semi-analytical model for determining the equilibrium configuration and the radial breathing mode (RBM) frequency of single-wall carbon nanotubes (CNTs) is presented. By taking advantage of the symmetry characterist...A semi-analytical model for determining the equilibrium configuration and the radial breathing mode (RBM) frequency of single-wall carbon nanotubes (CNTs) is presented. By taking advantage of the symmetry characteristics, a CNT structure is represented by five independent variables. A line search optimization procedure is employed to determine the equilibrium values of these variables by minimizing the potential energy. With the equilibrium configuration obtained, the semi-analytical model enables an efficient calculation of the RBM frequency of the CNTs. The radius and radial breathing mode frequency results obtained from the semi-analytical approach are compared with those from molecular dynamics (MD) and ab initio calculations. The results demonstrate that the semi-analytical approach offers an efficient and accurate way to determine the equilibrium structure and radial breathing mode frequency of CNTs.展开更多
The selection and design of an optimal solvent for extractive distillation require reliable vapour-liquid phase equilibrium data and knowledge of extraction mechanisms.Compared with time-consuming experiments,molecula...The selection and design of an optimal solvent for extractive distillation require reliable vapour-liquid phase equilibrium data and knowledge of extraction mechanisms.Compared with time-consuming experiments,molecular simulation presents great potential in research on the properties of fluids.Therefore,in this work,Gibbs ensemble Monte Carlo was applied to successfully predict the vapour-liquid phase equilibrium data of binary and ternary systems containing benzene,thiophene and N,Ndimethylformamide(DMF) at P=101.3 kPa.The explicit hydrogen version of the transferable potentials for phase equilibria potential model was chosen for benzene and thiophene,whereas the OPLS potential model was selected for DMF.The predicted phase diagrams were compared with experimental data and the UNIQUAC thermodynamic model.A good agreement was obtained,which corroborated the validity of the potential models.In addition,the extraction mechanism was explored by radial distribution function(RDF) of the liquid-phase structure.The RDFs showed that thiophene and benzene shared a similar liquidphase structure because of the intermolecular interaction.The distinct difference between the RDFs of DMF/benzene and those of DMF/thiophene is that the oxygen atom of DMF is more associated with hydrogen atoms of thiophene than that of benzene,which may be responsible for the extraction effect of DMF.展开更多
The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calcu...The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calculating method of RWCB is proposed. The equilibrium profile is calculated by geometric model and variational approach,based on it,the predicted model of RWCB is developed for tire design. Finally,four different designs of 12R22.5 tires are investigated by experiment and finite element method,which is used to validate the accuracy of the theoretical method. Results indicate that experimental and finite element analysis results are found to be in good agreement with theoretical results; linear relationships are existed between the cord length and RWCB,and also existed between the position of belt and RWCB; tires designed by the methods have smaller and more uniform displacement,so the method can be used for tire optimized design.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51236001,51006005)the National Basic Research Program of China (No. 2012CB720201)Beijing Natural Science Foundation (No. 3151002)
文摘The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation(CF) source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional(3D) simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge(LE) in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.
基金This study was supported by the National Natural Science Foundation Project(52376021).
文摘Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery.Several different flow control mechanisms and qualitative design strategies have been proposed.The endwall contouring mechanism based on the flow governing equations is significant for exploring the quantitative design strategies of the nonaxisymmetric endwall contouring.In this paper,the static pressure redistribution mechanism of endwall contouring was explained based on the radial equilibrium equation.A quantified expression of the static pressure redistribution mechanism was proposed.Compressor cascades were simulated using an experimentally validated numerical method to validate the static pressure redistribution mechanism.A geometric parameter named meridional curvature(Cme)is defined to quantify the concave and convex features of the endwall.Results indicate that the contoured endwall changes the streamline curvature,inducing a centrifugal acceleration.Consequently,the radial pressure gradient is reformed to maintain the radial equilibrium.The convex endwall represented by positive Cme increases the radial pressure gradient,decreasing the endwall static pressure,while the concave endwall represented by negative Cme increases the endwall static pressure.The Cme helps to establish the quantified relation between the change in the endwall radial pressure gradient and the endwall geometry.Besides,there is a great correlation between the distributions of the Cme and the change in the endwall static pressure.It can be concluded that the parameter Cme can be considered as a significant parameter to parameterize the endwall surface and to explore the quantitative design strategies of the nonaxisymmetric endwall contouring.
基金supported by the National Science Foundation (Grant CBET-0955096)
文摘A semi-analytical model for determining the equilibrium configuration and the radial breathing mode (RBM) frequency of single-wall carbon nanotubes (CNTs) is presented. By taking advantage of the symmetry characteristics, a CNT structure is represented by five independent variables. A line search optimization procedure is employed to determine the equilibrium values of these variables by minimizing the potential energy. With the equilibrium configuration obtained, the semi-analytical model enables an efficient calculation of the RBM frequency of the CNTs. The radius and radial breathing mode frequency results obtained from the semi-analytical approach are compared with those from molecular dynamics (MD) and ab initio calculations. The results demonstrate that the semi-analytical approach offers an efficient and accurate way to determine the equilibrium structure and radial breathing mode frequency of CNTs.
文摘The selection and design of an optimal solvent for extractive distillation require reliable vapour-liquid phase equilibrium data and knowledge of extraction mechanisms.Compared with time-consuming experiments,molecular simulation presents great potential in research on the properties of fluids.Therefore,in this work,Gibbs ensemble Monte Carlo was applied to successfully predict the vapour-liquid phase equilibrium data of binary and ternary systems containing benzene,thiophene and N,Ndimethylformamide(DMF) at P=101.3 kPa.The explicit hydrogen version of the transferable potentials for phase equilibria potential model was chosen for benzene and thiophene,whereas the OPLS potential model was selected for DMF.The predicted phase diagrams were compared with experimental data and the UNIQUAC thermodynamic model.A good agreement was obtained,which corroborated the validity of the potential models.In addition,the extraction mechanism was explored by radial distribution function(RDF) of the liquid-phase structure.The RDFs showed that thiophene and benzene shared a similar liquidphase structure because of the intermolecular interaction.The distinct difference between the RDFs of DMF/benzene and those of DMF/thiophene is that the oxygen atom of DMF is more associated with hydrogen atoms of thiophene than that of benzene,which may be responsible for the extraction effect of DMF.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272105)the Joint Construction Project of HIT and Weihai(Grant No.2013DXGJ02)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2015109)
文摘The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calculating method of RWCB is proposed. The equilibrium profile is calculated by geometric model and variational approach,based on it,the predicted model of RWCB is developed for tire design. Finally,four different designs of 12R22.5 tires are investigated by experiment and finite element method,which is used to validate the accuracy of the theoretical method. Results indicate that experimental and finite element analysis results are found to be in good agreement with theoretical results; linear relationships are existed between the cord length and RWCB,and also existed between the position of belt and RWCB; tires designed by the methods have smaller and more uniform displacement,so the method can be used for tire optimized design.